算法:模拟+树状数组/线段树
难度:(NOIP+)
暴力算法很明显,模拟就好,时间复杂度O(n^2);
两个栈可以“捏”到一个数组中,而栈顶则是将这个数组拆成两个栈的分割点(pp)。
于是移动就变成了pp的移动,每次移动时都求出目的分割点和pp之间的物品数目即可(树状数组维护区间物品数目)。时间复杂度O(nlogn)
注意:此题树状数组query时细节极多!!!但是80%的情况,只要样例过了,就差不多能A掉
代码如下:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <cmath>
#define ll long long
#define N 100005
using namespace std;
int a[N],b[N],c[N<<1];
struct node
{
int x;
int po;
}poi[N<<1];
int cnt;
int cmp(node a,node b)
{
return a.x>b.x;
}
int lowbit(int x)
{
return x & (-x);
}
int n,m;
void add(int x,int w)
{
while(x<=n+m)
{
c[x]+=w;
x+=lowbit(x);
}
}
ll query(int x)
{
ll ret=0;
while(x)
{
ret+=1ll*c[x];
x-=lowbit(x);
}
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
int pp=n;
for(int i = n;i >= 1;i--)
{
scanf("%d",&a[i]);
poi[++cnt].x=a[i];
poi[cnt].po=i;
add(i,1);
}
for(int i = 1;i <= m;i++)
{
scanf("%d",&b[i]);
poi[++cnt].x=b[i];
poi[cnt].po=i+n;
add(i+n,1);
}
sort(poi+1,poi+n+m+1,cmp);
ll ans=0;
for(int i = 1;i <= n+m;i++)
{
int ee=poi[i].po;
if(pp<ee)//这里的细节!!!
{
ans+=query(ee-1)-query(pp);
pp=ee-1;
add(ee,-1);
}else
{
ans+=query(pp)-query(ee);
pp=ee;
add(ee,-1);
}
}
printf("%lld\n",ans);
return 0 ;
}