给定一棵有根树,每个点有一个权值,提供三种操作:
- 将 x x x节点变为根节点
- 将 x x x到 y y y路径上的点的权值全部改为 v v v
- 询问 x x x的子树中点权的最小值
这种题一看就是树链剖分,只不过开始没初始化 w a wa wa了一次
分类小讨论一波,容易发现,
r
t
rt
rt
=
=
=
x
x
x的时候就是整个子树,
x
x
x在
r
t
rt
rt到根的路径上时就是整个树去掉
x
x
x到
r
t
rt
rt方向上第一个点的子树,这个在树剖上跑一下就行了,不在重链上直接跳,否则用
d
f
s
dfs
dfs序取出重链上的某个距离上的点。然后就是把
d
f
s
dfs
dfs序分成
2
2
2个区间求解。否则就是正常的求子树。
一开始以为权值能是
0
0
0,网上搞了一份代码下来拍,把
t
a
g
tag
tag值改成
1
e
15
1e15
1e15,结果标记下放完
t
a
g
=
0
tag=0
tag=0,调了
7
d
a
y
s
7days
7days可以说是很灵性了。
可爱的代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100010;
int n,m,a[N],cnt,ans[N<<2],mar[N<<2],head[N],d[N],f[N],son[N],size[N],top[N],id[N],rk[N];
struct edge{
int v,nex;
}e[N<<2];
void addedge(int u,int v){
e[++cnt]=(edge){v,head[u]};
head[u]=cnt;
}
void dfs(int u){
size[u]=1;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].v;
if(v==f[u]){
continue;
}
d[v]=d[u]+1;
f[v]=u;
dfs(v);
size[u]+=size[v];
if(size[son[u]]<size[v]){
son[u]=v;
}
}
}
void dfs2(int u,int t){
top[u]=t;
id[u]=++cnt;
rk[cnt]=u;
if(son[u]){
dfs2(son[u],t);
}
for(int i=head[u];i;i=e[i].nex){
int v=e[i].v;
if(v==f[u]||v==son[u]){
continue;
}
dfs2(v,v);
}
}
void build(int l,int r,int id){
if(l==r){
ans[id]=a[rk[l]];
return;
}
int mid=(l+r)>>1;
build(l,mid,id<<1);
build(mid+1,r,id<<1|1);
ans[id]=min(ans[id<<1],ans[id<<1|1]);
}
bool get(int x,int y){
if(id[x]>id[y]||id[x]+size[x]-1<id[y]){
return 0;
}
return 1;
}
void pushdown(int l,int r,int id){
if(!mar[id]){
return;
}
ans[id<<1]=ans[id<<1|1]=mar[id<<1]=mar[id<<1|1]=mar[id];
mar[id]=0;
}
void add(int nl,int nr,int k,int l,int r,int id){
if(nl<=l&&r<=nr){
ans[id]=mar[id]=k;
return;
}
pushdown(l,r,id);
int mid=(l+r)>>1;
if(nl<=mid){
add(nl,nr,k,l,mid,id<<1);
}
if(nr>mid){
add(nl,nr,k,mid+1,r,id<<1|1);
}
ans[id]=min(ans[id<<1],ans[id<<1|1]);
}
void change(int x,int y,int k){
while(top[x]!=top[y]){
if(d[top[x]]<d[top[y]]){
swap(x,y);
}
add(id[top[x]],id[x],k,1,n,1);
x=f[top[x]];
}
if(d[x]>d[y]){
swap(x,y);
}
add(id[x],id[y],k,1,n,1);
}
int found(int nl,int nr,int l,int r,int id){
if(nl<=l&&r<=nr){
return ans[id];
}
pushdown(l,r,id);
int mid=(l+r)>>1,res=0x7fffffff;
if(nl<=mid){
res=min(res,found(nl,nr,l,mid,id<<1));
}
if(nr>mid){
res=min(res,found(nl,nr,mid+1,r,id<<1|1));
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
cnt=0;
dfs(1);
dfs2(1,1);
build(1,n,1);
int r;
scanf("%d",&r);
int op,x,y,k;
while(m--){
scanf("%d%d",&op,&x);
if(op==1){
r=x;
}else if(op==2){
scanf("%d%d",&y,&k);
change(x,y,k);
}else{
if(x==r){
printf("%d\n",ans[1]);
}else if(get(x,r)){
int fa=0;
for(int i=head[x];i;i=e[i].nex){
if(get(e[i].v,r)){
fa=e[i].v;
break;
}
}
int res=found(1,id[fa]-1,1,n,1);
if(id[fa]+size[fa]<=n){
res=min(res,found(id[fa]+size[fa],n,1,n,1));
}
printf("%d\n",res);
}else{
printf("%d\n",found(id[x],id[x]+size[x]-1,1,n,1));
}
}
}
}