目录:点我
思维导图下载:点我
一、一阶微分方程的求解
1. 可分离变量型
- 能写成:
y ′ = f ( x ) ⋅ g ( y ) y'=f(x)\cdot g(y) y′=f(x)⋅g(y)
则:
d y g ( y ) = f ( x ) d x ∫ d y g ( y ) = ∫ f ( x ) d x \frac{dy}{g(y)}=f(x)dx\\\int\frac{dy}{g(y)}=\int f(x)dx g(y)dy=f(x)dx∫g(y)dy=∫f(x)dx - 能写成
y ′ = f ( a x + b y + c ) y'=f(ax+by+c) y′=f(ax+by+c)
令:
u = a x + b y + c u=ax+by+c u=ax+by+c
则:
u ′ = a + b f ( u ) d u a + b f ( u ) = d x ∫ d u a + b f ( u ) = ∫ d x u'=a+bf(u)\\\frac{du}{a+bf(u)}=dx\\\int\frac{du}{a+bf(u)}=\int dx u′=a+bf(u)a+bf(u)du=dx∫a+bf(u)du=∫dx
2. 齐次型
- 能写成:
y ′ = f ( y x ) y'=f(\frac{y}{x}) y′=f(xy)
令:
u = y x y = u x d y d x = u + x d u d x u=\frac{y}{x}\\y=ux\\\frac{dy}{dx}=u+x\frac{du}{dx} u=xyy=uxdxdy=u+xdxdu
则:
x d u d x + u = f ( u ) d u f ( u ) − u = d x x ∫ d u f ( u ) − u = ∫ d x x x\frac{du}{dx}+u=f(u)\\\frac{du}{f(u)-u}=\frac{dx}{x}\\\int\frac{du}{f(u)-u}=\int\frac{dx}{x} xdxdu+u=f(u)f(u)−udu=xdx∫f(u)−udu=∫xdx - 能写成
1 y ′ = f ( x y ) \frac{1}{y'}=f(\frac{x}{y}) y′1=f(yx)
令:
u = x y x = u y d x d y = u + y d u d y u=\frac{x}{y}\\x=uy\\\frac{dx}{dy}=u+y\frac{du}{dy} u=yxx=uydydx=u+ydydu
则:
y d u d y + u = f ( u ) d u f ( u ) − u = d y y ∫ d u f ( u ) − u = ∫ d y y y\frac{du}{dy}+u=f(u)\\\frac{du}{f(u)-u}=\frac{dy}{y}\\\int\frac{du}{f(u)-u}=\int\frac{dy}{y} ydydu+u=f(u)f(u)−udu=ydy∫f(u)−udu=∫ydy
3. 一阶线性型
能写成:
y
′
+
p
(
x
)
y
=
q
(
x
)
y'+p(x)y=q(x)
y′+p(x)y=q(x)
则:
e
∫
p
(
x
)
d
x
⋅
y
′
+
e
∫
p
(
x
)
d
x
p
(
x
)
⋅
y
=
e
∫
p
(
x
)
d
x
⋅
q
(
x
)
[
e
∫
p
(
x
)
d
x
⋅
y
]
′
=
e
∫
p
(
x
)
d
x
⋅
q
(
x
)
e
∫
p
(
x
)
d
x
⋅
y
=
∫
e
∫
p
(
x
)
d
x
⋅
q
(
x
)
d
x
+
C
y
=
e
−
∫
p
(
x
)
d
x
[
∫
e
∫
p
(
x
)
d
x
⋅
q
(
x
)
d
x
+
C
]
e^{\int p(x)dx}\cdot y'+e^{\int p(x)dx}p(x)\cdot y=e^{\int p(x)dx}\cdot q(x)\\\left[e^{\int p(x)dx}\cdot y\right]'=e^{\int p(x)dx}\cdot q(x)\\e^{\int p(x)dx}\cdot y=\int e^{\int p(x)dx}\cdot q(x)dx+C\\y=e^{-\int p(x)dx}\left[\int e^{\int p(x)dx}\cdot q(x)dx+C\right]
e∫p(x)dx⋅y′+e∫p(x)dxp(x)⋅y=e∫p(x)dx⋅q(x)[e∫p(x)dx⋅y]′=e∫p(x)dx⋅q(x)e∫p(x)dx⋅y=∫e∫p(x)dx⋅q(x)dx+Cy=e−∫p(x)dx[∫e∫p(x)dx⋅q(x)dx+C]
二、二阶可降阶微分方程的求解
1. 赶尽杀绝 y y y
能写成:
y
′
′
=
f
(
x
,
y
′
)
y''=f(x,y')
y′′=f(x,y′)
缺
y
y
y,令:
y
′
=
p
,
y
′
′
=
p
′
d
p
d
x
=
f
(
x
,
p
)
y'=p,y''=p'\\\frac{dp}{dx}=f(x,p)
y′=p,y′′=p′dxdp=f(x,p)
则解为:
p
=
φ
(
x
,
C
1
)
p=\varphi(x,C1)
p=φ(x,C1)
即
y
′
=
φ
(
x
,
C
1
)
y'=\varphi(x,C1)
y′=φ(x,C1),通解为:
y
=
∫
φ
(
x
,
C
1
)
d
x
+
C
2
y=\int\varphi(x,C1)dx+C2
y=∫φ(x,C1)dx+C2
2. 斩草除根 x x x
能写成:
y
′
′
=
f
(
y
,
y
′
)
y''=f(y,y')
y′′=f(y,y′)
缺
x
x
x,令:
y
′
=
p
,
y
′
′
=
d
p
d
x
=
d
p
d
y
⋅
d
y
d
x
=
d
p
d
y
⋅
p
p
d
p
d
y
=
f
(
y
,
p
)
y'=p,y''=\frac{dp}{dx}=\frac{dp}{dy}\cdot\frac{dy}{dx}=\frac{dp}{dy}\cdot p\\p\frac{dp}{dy}=f(y,p)
y′=p,y′′=dxdp=dydp⋅dxdy=dydp⋅ppdydp=f(y,p)
若求得其解为
p
=
φ
(
y
,
C
1
)
p=\varphi(y,C1)
p=φ(y,C1),则:
p
=
d
y
d
x
=
φ
(
y
,
C
1
)
p=\frac{dy}{dx}=\varphi(y,C1)
p=dxdy=φ(y,C1)
分离变量得:
d
y
φ
(
y
,
C
1
)
=
d
x
\frac{dy}{\varphi(y,C1)=dx}
φ(y,C1)=dxdy
两边积分:
∫
d
y
φ
(
y
,
C
1
)
=
x
+
C
2
\int\frac{dy}{\varphi(y,C1)}=x+C2
∫φ(y,C1)dy=x+C2
三、高阶常系数线性微分方程的求解
1. 齐次线性微分方程的通解
- 若
p
2
−
4
q
>
0
p^2-4q>0
p2−4q>0,则
λ
1
≠
λ
2
\lambda_1\ne\lambda_2
λ1=λ2是特征方程的两个不等实根,则通解为:
y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x - 若
p
2
−
4
q
=
0
p^2-4q=0
p2−4q=0,则
λ
1
=
λ
2
\lambda_1=\lambda_2
λ1=λ2是特征方程的两个相等实根,则通解为:
y = ( C 1 + C 2 x ) e λ x y=\left(C_1+C_2x\right)e^{\lambda x} y=(C1+C2x)eλx - 若
p
2
−
4
q
<
0
p^2-4q<0
p2−4q<0,设
α
±
β
i
\alpha\pm\beta i
α±βi是特征方程的一堆共轭复根,则通解为:
y = e α x ( C 1 cos β x + C 2 sin β x ) y=e^{\alpha x}\left(C_1\cos{\beta x}+C_2\sin{\beta x}\right) y=eαx(C1cosβx+C2sinβx)
2. 非齐次线性微分方程的特解
- 当自由项
f
(
x
)
=
P
n
(
x
)
e
α
x
f(x)=P_n(x)e^{\alpha x}
f(x)=Pn(x)eαx时,特解要设为:
y ∗ = e α x Q n ( x ) x k y^*=e^{\alpha x}Q_n(x)x^k y∗=eαxQn(x)xk其中:
{ e α x 照 抄 Q n ( x ) 为 x 的 n 次 一 般 多 项 式 k = { 0 , α ≠ λ 1 , α ≠ λ 2 1 , α = λ 1 或 α = λ 2 2 , α = λ 1 = λ 2 \left\{\begin{matrix} e^{\alpha x}照抄 \\ Q_n(x)为x的n次一般多项式 \\ k=\left\{\begin{matrix} 0,&\alpha\ne\lambda_1,\alpha\ne\lambda_2 \\ 1,&\alpha=\lambda_1或\alpha=\lambda_2 \\ 2,&\alpha=\lambda_1=\lambda_2 \end{matrix}\right. \end{matrix}\right. ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧eαx照抄Qn(x)为x的n次一般多项式k=⎩⎨⎧0,1,2,α=λ1,α=λ2α=λ1或α=λ2α=λ1=λ2 - 当自由项
f
(
x
)
=
e
α
x
[
P
m
(
x
)
cos
β
x
+
P
n
(
x
)
sin
β
x
]
f(x)=e^{\alpha x}\left[P_m(x)\cos{\beta x}+P_n(x)\sin{\beta x}\right]
f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]时,特解要设为:
y ∗ = e α x [ Q l ( 1 ) ( x ) cos β x + Q l ( 2 ) ( x ) sin β x ] x k y^*=e^{\alpha x}\left[Q_l^{(1)}(x)\cos{\beta x}+Q_l^{(2)}(x)\sin{\beta x}\right]x^k y∗=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk
其中:
{ e α x 照 抄 l = max ( m , n ) , Q l ( 1 ) ( x ) , Q l ( 2 ) ( x ) 分 别 为 x 的 两 个 不 同 的 l 次 一 般 多 项 式 k = { 0 , α ± β i 不 是 特 征 根 1 , α ± β i 是 特 征 根 \left\{\begin{matrix} e^{\alpha x}照抄 \\ l=\max(m,n),Q_l^{(1)}(x),Q_l^{(2)}(x)分别为x的两个不同的l次一般多项式 \\ k=\left\{\begin{matrix} 0, & \alpha\pm\beta i不是特征根 \\ 1, & \alpha\pm\beta i是特征根 \end{matrix}\right. \\ \end{matrix}\right. ⎩⎪⎪⎨⎪⎪⎧eαx照抄l=max(m,n),Ql(1)(x),Ql(2)(x)分别为x的两个不同的l次一般多项式k={0,1,α±βi不是特征根α±βi是特征根
3. 能写成 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py′+qy=f(x)
- 写 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0,写齐次方程的通解
- 设特解 y ′ y' y′,代回方程求待定系数,写出特解
- 写出通解
4. 能写成 y ′ ′ + p y ′ + q y = f 1 ( x ) + f 2 ( x ) y''+py'+qy=f_1(x)+f_2(x) y′′+py′+qy=f1(x)+f2(x)
- 写 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0,写齐次方程的通解
- y ′ ′ + p y ′ + q y = f 1 ( x ) y''+py'+qy=f_1(x) y′′+py′+qy=f1(x),写出特解 y 1 ∗ y_1^* y1∗
- y ′ ′ + p y ′ + q y = f 2 ( x ) y''+py'+qy=f_2(x) y′′+py′+qy=f2(x),写出特解 y 2 ∗ y_2^* y2∗
- y 1 ∗ + y 2 ∗ y_1^*+y_2^* y1∗+y2∗为特解
- 写出通解
5. 能写成 x 2 y ′ ′ + p x y ′ + q y = f ( x ) x^2y''+pxy'+qy=f(x) x2y′′+pxy′+qy=f(x)
用 x = e t x=e^t x=et代换,化为上述情形,解出结果将 x x x回代
6. y ( n ) ′ ′ ( n ≥ 3 ) {y^{(n)}}'' (n\ge3) y(n)′′(n≥3)的情形(反解)
如:
y
′
′
′
+
p
1
y
′
′
+
p
2
y
′
+
p
3
y
=
0
y'''+p_1y''+p_2y'+p_3y=0
y′′′+p1y′′+p2y′+p3y=0
写为:
λ
3
+
p
1
λ
2
+
p
2
λ
+
p
3
=
0
\lambda^3+p_1\lambda^2+p_2\lambda+p_3=0
λ3+p1λ2+p2λ+p3=0
- 若
λ
\lambda
λ为单实根,写:
C e λ x Ce^{\lambda x} Ceλx - 若
λ
\lambda
λ为
k
k
k重实根,写:
( C 1 + C 2 x + C 3 x 2 + ⋅ ⋅ ⋅ + C k x k − 1 ) e λ x (C_1+C_2x+C_3x^2+\cdot\cdot\cdot+C_kx^{k-1})e^{\lambda x} (C1+C2x+C3x2+⋅⋅⋅+Ckxk−1)eλx - 若
λ
\lambda
λ为单复根
α
±
β
i
\alpha\pm\beta i
α±βi,写:
e α x ( C 1 cos β x + C 2 sin β x ) e^{\alpha x}(C_1\cos{\beta x}+C_2\sin{\beta x}) eαx(C1cosβx+C2sinβx)
四、换元法
- 求导公式逆用
- 自变量换元(有提示)
- 用因变量换元(有提示)
- 用 x , y x,y x,y地位互换来换元(有提示)
五、应用题
1. 用极限、导数定义或积分等式建立方程
2. 用几何应用建立方程
- 曲线切线斜率
k = f ′ ( x 0 ) = tan α k=f'(x_0)=\tan\alpha k=f′(x0)=tanα - 两曲线公切线斜率
f ′ ( x 0 ) = g ′ ( x 0 ) f'(x_0)=g'(x_0) f′(x0)=g′(x0) - 截距
Y − y = y ′ ( X − x ) { 令 Y = 0 X = x − y y ′ ( x 轴 上 的 截 距 ) 令 X = 0 Y = y − x y ′ ( y 轴 上 的 截 距 ) Y-y=y'(X-x) \left\{\begin{matrix} 令Y=0 & X=x-\frac{y}{y'} & (x轴上的截距) \\ 令X=0 & Y=y-xy' & (y轴上的截距) \end{matrix}\right. Y−y=y′(X−x){令Y=0令X=0X=x−y′yY=y−xy′(x轴上的截距)(y轴上的截距) - 面积
∫ a b f ( x ) d x \int_a^bf(x)dx ∫abf(x)dx - 体积
V x = ∫ a b π f 2 ( x ) d x , V y = ∫ a b 2 π x ∣ f ( x ) ∣ d x V_x=\int_a^b\pi f^2(x)dx,V_y=\int_a^b2\pi x|f(x)|dx Vx=∫abπf2(x)dx,Vy=∫ab2πx∣f(x)∣dx - 平均值
f ‾ = 1 b − a ∫ b a f ( x ) d x = f ( ξ ) \overline{f}=\frac{1}{b-a}\int_b^af(x)dx=f(\xi) f=b−a1∫baf(x)dx=f(ξ) - 弧长
L = ∫ a b 1 + ( y x ′ ) 2 d x L=\int_a^b\sqrt{1+(y_x')^2}dx L=∫ab1+(yx′)2dx - 侧面积
S = ∫ a b 2 π ∣ y ( x ) ∣ 1 + ( y x ′ ) 2 d x S=\int_a^b2\pi|y(x)|\sqrt{1+(y_x')^2}dx S=∫ab2π∣y(x)∣1+(yx′)2dx - 曲率
k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 k=\frac{|y''|}{\left[1+(y')^2\right]^\frac{3}{2}} k=[1+(y′)2]23∣y′′∣ - 形心
x ‾ = ∬ D x d σ ∬ D d σ , y ‾ = ∬ D y d σ ∬ D d σ \overline{x}=\frac{\iint_Dxd\sigma}{\iint_Dd\sigma},\overline{y}=\frac{\iint_Dyd\sigma}{\iint_Dd\sigma} x=∬Ddσ∬Dxdσ,y=∬Ddσ∬Dydσ
3. 用变化率建立方程
- 元素衰变问题
- 人口增长问题
- 曳物线问题
- 冷却定律
- 牛顿第二定律
- 经济问题