微分方程

目录:点我

思维导图下载:点我

微分方程

一、一阶微分方程的求解

1. 可分离变量型

  1. 能写成:
    y ′ = f ( x ) ⋅ g ( y ) y'=f(x)\cdot g(y) y=f(x)g(y)
    则:
    d y g ( y ) = f ( x ) d x ∫ d y g ( y ) = ∫ f ( x ) d x \frac{dy}{g(y)}=f(x)dx\\\int\frac{dy}{g(y)}=\int f(x)dx g(y)dy=f(x)dxg(y)dy=f(x)dx
  2. 能写成
    y ′ = f ( a x + b y + c ) y'=f(ax+by+c) y=f(ax+by+c)
    令:
    u = a x + b y + c u=ax+by+c u=ax+by+c
    则:
    u ′ = a + b f ( u ) d u a + b f ( u ) = d x ∫ d u a + b f ( u ) = ∫ d x u'=a+bf(u)\\\frac{du}{a+bf(u)}=dx\\\int\frac{du}{a+bf(u)}=\int dx u=a+bf(u)a+bf(u)du=dxa+bf(u)du=dx

2. 齐次型

  1. 能写成:
    y ′ = f ( y x ) y'=f(\frac{y}{x}) y=f(xy)
    令:
    u = y x y = u x d y d x = u + x d u d x u=\frac{y}{x}\\y=ux\\\frac{dy}{dx}=u+x\frac{du}{dx} u=xyy=uxdxdy=u+xdxdu
    则:
    x d u d x + u = f ( u ) d u f ( u ) − u = d x x ∫ d u f ( u ) − u = ∫ d x x x\frac{du}{dx}+u=f(u)\\\frac{du}{f(u)-u}=\frac{dx}{x}\\\int\frac{du}{f(u)-u}=\int\frac{dx}{x} xdxdu+u=f(u)f(u)udu=xdxf(u)udu=xdx
  2. 能写成
    1 y ′ = f ( x y ) \frac{1}{y'}=f(\frac{x}{y}) y1=f(yx)
    令:
    u = x y x = u y d x d y = u + y d u d y u=\frac{x}{y}\\x=uy\\\frac{dx}{dy}=u+y\frac{du}{dy} u=yxx=uydydx=u+ydydu
    则:
    y d u d y + u = f ( u ) d u f ( u ) − u = d y y ∫ d u f ( u ) − u = ∫ d y y y\frac{du}{dy}+u=f(u)\\\frac{du}{f(u)-u}=\frac{dy}{y}\\\int\frac{du}{f(u)-u}=\int\frac{dy}{y} ydydu+u=f(u)f(u)udu=ydyf(u)udu=ydy

3. 一阶线性型

能写成:
y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x)
则:
e ∫ p ( x ) d x ⋅ y ′ + e ∫ p ( x ) d x p ( x ) ⋅ y = e ∫ p ( x ) d x ⋅ q ( x ) [ e ∫ p ( x ) d x ⋅ y ] ′ = e ∫ p ( x ) d x ⋅ q ( x ) e ∫ p ( x ) d x ⋅ y = ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C ] e^{\int p(x)dx}\cdot y'+e^{\int p(x)dx}p(x)\cdot y=e^{\int p(x)dx}\cdot q(x)\\\left[e^{\int p(x)dx}\cdot y\right]'=e^{\int p(x)dx}\cdot q(x)\\e^{\int p(x)dx}\cdot y=\int e^{\int p(x)dx}\cdot q(x)dx+C\\y=e^{-\int p(x)dx}\left[\int e^{\int p(x)dx}\cdot q(x)dx+C\right] ep(x)dxy+ep(x)dxp(x)y=ep(x)dxq(x)[ep(x)dxy]=ep(x)dxq(x)ep(x)dxy=ep(x)dxq(x)dx+Cy=ep(x)dx[ep(x)dxq(x)dx+C]

二、二阶可降阶微分方程的求解

1. 赶尽杀绝 y y y

能写成:
y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)
y y y,令:
y ′ = p , y ′ ′ = p ′ d p d x = f ( x , p ) y'=p,y''=p'\\\frac{dp}{dx}=f(x,p) y=p,y=pdxdp=f(x,p)
则解为:
p = φ ( x , C 1 ) p=\varphi(x,C1) p=φ(x,C1)
y ′ = φ ( x , C 1 ) y'=\varphi(x,C1) y=φ(x,C1),通解为:
y = ∫ φ ( x , C 1 ) d x + C 2 y=\int\varphi(x,C1)dx+C2 y=φ(x,C1)dx+C2

2. 斩草除根 x x x

能写成:
y ′ ′ = f ( y , y ′ ) y''=f(y,y') y=f(y,y)
x x x,令:
y ′ = p , y ′ ′ = d p d x = d p d y ⋅ d y d x = d p d y ⋅ p p d p d y = f ( y , p ) y'=p,y''=\frac{dp}{dx}=\frac{dp}{dy}\cdot\frac{dy}{dx}=\frac{dp}{dy}\cdot p\\p\frac{dp}{dy}=f(y,p) y=p,y=dxdp=dydpdxdy=dydpppdydp=f(y,p)
若求得其解为 p = φ ( y , C 1 ) p=\varphi(y,C1) p=φ(y,C1),则:
p = d y d x = φ ( y , C 1 ) p=\frac{dy}{dx}=\varphi(y,C1) p=dxdy=φ(y,C1)
分离变量得:
d y φ ( y , C 1 ) = d x \frac{dy}{\varphi(y,C1)=dx} φ(y,C1)=dxdy
两边积分:
∫ d y φ ( y , C 1 ) = x + C 2 \int\frac{dy}{\varphi(y,C1)}=x+C2 φ(y,C1)dy=x+C2

三、高阶常系数线性微分方程的求解

1. 齐次线性微分方程的通解

  1. p 2 − 4 q > 0 p^2-4q>0 p24q>0,则 λ 1 ≠ λ 2 \lambda_1\ne\lambda_2 λ1=λ2是特征方程的两个不等实根,则通解为:
    y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x
  2. p 2 − 4 q = 0 p^2-4q=0 p24q=0,则 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2是特征方程的两个相等实根,则通解为:
    y = ( C 1 + C 2 x ) e λ x y=\left(C_1+C_2x\right)e^{\lambda x} y=(C1+C2x)eλx
  3. p 2 − 4 q < 0 p^2-4q<0 p24q<0,设 α ± β i \alpha\pm\beta i α±βi是特征方程的一堆共轭复根,则通解为:
    y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}\left(C_1\cos{\beta x}+C_2\sin{\beta x}\right) y=eαx(C1cosβx+C2sinβx)

2. 非齐次线性微分方程的特解

  1. 当自由项 f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx时,特解要设为:
    y ∗ = e α x Q n ( x ) x k y^*=e^{\alpha x}Q_n(x)x^k y=eαxQn(x)xk其中:
    { e α x 照 抄 Q n ( x ) 为 x 的 n 次 一 般 多 项 式 k = { 0 , α ≠ λ 1 , α ≠ λ 2 1 , α = λ 1 或 α = λ 2 2 , α = λ 1 = λ 2 \left\{\begin{matrix} e^{\alpha x}照抄 \\ Q_n(x)为x的n次一般多项式 \\ k=\left\{\begin{matrix} 0,&\alpha\ne\lambda_1,\alpha\ne\lambda_2 \\ 1,&\alpha=\lambda_1或\alpha=\lambda_2 \\ 2,&\alpha=\lambda_1=\lambda_2 \end{matrix}\right. \end{matrix}\right. eαxQn(x)xnk=0,1,2,α=λ1,α=λ2α=λ1α=λ2α=λ1=λ2
  2. 当自由项 f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}\left[P_m(x)\cos{\beta x}+P_n(x)\sin{\beta x}\right] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]时,特解要设为:
    y ∗ = e α x [ Q l ( 1 ) ( x ) cos ⁡ β x + Q l ( 2 ) ( x ) sin ⁡ β x ] x k y^*=e^{\alpha x}\left[Q_l^{(1)}(x)\cos{\beta x}+Q_l^{(2)}(x)\sin{\beta x}\right]x^k y=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk
    其中:
    { e α x 照 抄 l = max ⁡ ( m , n ) , Q l ( 1 ) ( x ) , Q l ( 2 ) ( x ) 分 别 为 x 的 两 个 不 同 的 l 次 一 般 多 项 式 k = { 0 , α ± β i 不 是 特 征 根 1 , α ± β i 是 特 征 根 \left\{\begin{matrix} e^{\alpha x}照抄 \\ l=\max(m,n),Q_l^{(1)}(x),Q_l^{(2)}(x)分别为x的两个不同的l次一般多项式 \\ k=\left\{\begin{matrix} 0, & \alpha\pm\beta i不是特征根 \\ 1, & \alpha\pm\beta i是特征根 \end{matrix}\right. \\ \end{matrix}\right. eαxl=max(m,n),Ql(1)(x),Ql(2)(x)xlk={0,1,α±βiα±βi

3. 能写成 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x)

  1. λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0,写齐次方程的通解
  2. 设特解 y ′ y' y,代回方程求待定系数,写出特解
  3. 写出通解

4. 能写成 y ′ ′ + p y ′ + q y = f 1 ( x ) + f 2 ( x ) y''+py'+qy=f_1(x)+f_2(x) y+py+qy=f1(x)+f2(x)

  1. λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0,写齐次方程的通解
  2. y ′ ′ + p y ′ + q y = f 1 ( x ) y''+py'+qy=f_1(x) y+py+qy=f1(x),写出特解 y 1 ∗ y_1^* y1
  3. y ′ ′ + p y ′ + q y = f 2 ( x ) y''+py'+qy=f_2(x) y+py+qy=f2(x),写出特解 y 2 ∗ y_2^* y2
  4. y 1 ∗ + y 2 ∗ y_1^*+y_2^* y1+y2为特解
  5. 写出通解

5. 能写成 x 2 y ′ ′ + p x y ′ + q y = f ( x ) x^2y''+pxy'+qy=f(x) x2y+pxy+qy=f(x)

x = e t x=e^t x=et代换,化为上述情形,解出结果将 x x x回代

6. y ( n ) ′ ′ ( n ≥ 3 ) {y^{(n)}}'' (n\ge3) y(n)(n3)的情形(反解)

如:
y ′ ′ ′ + p 1 y ′ ′ + p 2 y ′ + p 3 y = 0 y'''+p_1y''+p_2y'+p_3y=0 y+p1y+p2y+p3y=0
写为:
λ 3 + p 1 λ 2 + p 2 λ + p 3 = 0 \lambda^3+p_1\lambda^2+p_2\lambda+p_3=0 λ3+p1λ2+p2λ+p3=0

  1. λ \lambda λ为单实根,写:
    C e λ x Ce^{\lambda x} Ceλx
  2. λ \lambda λ k k k重实根,写:
    ( C 1 + C 2 x + C 3 x 2 + ⋅ ⋅ ⋅ + C k x k − 1 ) e λ x (C_1+C_2x+C_3x^2+\cdot\cdot\cdot+C_kx^{k-1})e^{\lambda x} (C1+C2x+C3x2++Ckxk1)eλx
  3. λ \lambda λ为单复根 α ± β i \alpha\pm\beta i α±βi,写:
    e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x}(C_1\cos{\beta x}+C_2\sin{\beta x}) eαx(C1cosβx+C2sinβx)

四、换元法

  1. 求导公式逆用
  2. 自变量换元(有提示)
  3. 用因变量换元(有提示)
  4. x , y x,y x,y地位互换来换元(有提示)

五、应用题

1. 用极限、导数定义或积分等式建立方程

2. 用几何应用建立方程

  1. 曲线切线斜率
    k = f ′ ( x 0 ) = tan ⁡ α k=f'(x_0)=\tan\alpha k=f(x0)=tanα
  2. 两曲线公切线斜率
    f ′ ( x 0 ) = g ′ ( x 0 ) f'(x_0)=g'(x_0) f(x0)=g(x0)
  3. 截距
    Y − y = y ′ ( X − x ) { 令 Y = 0 X = x − y y ′ ( x 轴 上 的 截 距 ) 令 X = 0 Y = y − x y ′ ( y 轴 上 的 截 距 ) Y-y=y'(X-x) \left\{\begin{matrix} 令Y=0 & X=x-\frac{y}{y'} & (x轴上的截距) \\ 令X=0 & Y=y-xy' & (y轴上的截距) \end{matrix}\right. Yy=y(Xx){Y=0X=0X=xyyY=yxy(x)(y)
  4. 面积
    ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx
  5. 体积
    V x = ∫ a b π f 2 ( x ) d x , V y = ∫ a b 2 π x ∣ f ( x ) ∣ d x V_x=\int_a^b\pi f^2(x)dx,V_y=\int_a^b2\pi x|f(x)|dx Vx=abπf2(x)dx,Vy=ab2πxf(x)dx
  6. 平均值
    f ‾ = 1 b − a ∫ b a f ( x ) d x = f ( ξ ) \overline{f}=\frac{1}{b-a}\int_b^af(x)dx=f(\xi) f=ba1baf(x)dx=f(ξ)
  7. 弧长
    L = ∫ a b 1 + ( y x ′ ) 2 d x L=\int_a^b\sqrt{1+(y_x')^2}dx L=ab1+(yx)2 dx
  8. 侧面积
    S = ∫ a b 2 π ∣ y ( x ) ∣ 1 + ( y x ′ ) 2 d x S=\int_a^b2\pi|y(x)|\sqrt{1+(y_x')^2}dx S=ab2πy(x)1+(yx)2 dx
  9. 曲率
    k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 k=\frac{|y''|}{\left[1+(y')^2\right]^\frac{3}{2}} k=[1+(y)2]23y
  10. 形心
    x ‾ = ∬ D x d σ ∬ D d σ , y ‾ = ∬ D y d σ ∬ D d σ \overline{x}=\frac{\iint_Dxd\sigma}{\iint_Dd\sigma},\overline{y}=\frac{\iint_Dyd\sigma}{\iint_Dd\sigma} x=DdσDxdσ,y=DdσDydσ

3. 用变化率建立方程

  1. 元素衰变问题
  2. 人口增长问题
  3. 曳物线问题
  4. 冷却定律
  5. 牛顿第二定律
  6. 经济问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值