蓝桥杯迷宫问题

文章介绍了如何利用C++中的队列和栈数据结构解决迷宫问题,分别展示了BFS(广度优先搜索)和DFS(深度优先搜索)两种算法的实现,以及在不同场景下的应用,如通过复杂迷宫并找到步数最少且字典序最小的路径。
摘要由CSDN通过智能技术生成

一、队列和栈的函数介绍

(1) 队列

#include<queue>  //头文件
q.empty();         //如果队列为空返回true, 否则返回false     
q.size();          //返回队列中元素的个数
q.front();         //返回队首元素
q.pop();           //弹出队首元素但不返回其值
q.push();          //将元素压入队列
q.back();          //返回队尾元素的值

(2) 栈

#include<stack>     //头文件
s.empty();         //如果栈为空则返回true, 否则返回false;
s.size();          //返回栈中元素的个数
s.top();           //返回栈顶元素
s.pop();           //弹出栈顶元素
s.push();          //将元素压入栈顶

二、第十届迷宫题目

下图给出了一个迷宫的平面图,其中标记为1 的为障碍,标记为0 的为可
以通行的地方。
010000
000100
001001
110000
迷宫的入口为左上角,出口为右下角,在迷宫中,只能从一个位置走到这
个它的上、下、左、右四个方向之一。
对于上面的迷宫,从入口开始,可以按DRRURRDDDR 的顺序通过迷宫,
一共10 步。其中D、U、L、R 分别表示向下、向上、向左、向右走。
对于下面这个更复杂的迷宫(30 行50 列),请找出一种通过迷宫的方式,
其使用的步数最少,在步数最少的前提下,请找出字典序最小的一个作为答案。
请注意在字典序中D<L<R<U。
01010101001011001001010110010110100100001000101010
00001000100000101010010000100000001001100110100101
01111011010010001000001101001011100011000000010000
01000000001010100011010000101000001010101011001011
00011111000000101000010010100010100000101100000000
11001000110101000010101100011010011010101011110111
00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010
00111000001010100001100010000001000101001100001001
11000110100001110010001001010101010101010001101000
00010000100100000101001010101110100010101010000101
11100100101001001000010000010101010100100100010100
00000010000000101011001111010001100000101010100011
10101010011100001000011000010110011110110100001000
10101010100001101010100101000010100000111011101001
10000000101100010000101100101101001011100000000100
10101001000000010100100001000100000100011110101001
00101001010101101001010100011010101101110000110101
11001010000100001100000010100101000001000111000010
00001000110000110101101000000100101001001000011101
10100101000101000000001110110010110101101010100001
00101000010000110101010000100010001001000100010101
10100001000110010001000010101001010101011111010010
00000100101000000110010100101001000001000000000010
11010000001001110111001001000011101001011011101000
00000110100010001000100000001000011101000000110011
10101000101000100010001111100010101001010000001000
10000010100101001010110000000100101010001011101000
00111100001000010000000110111000000001000000001011
10000001100111010111010001000110111010101101111000

BFS解法

#include<iostream>
#include<queue>
using namespace std;

struct node{
	int x;
	int y;
};    //存储坐标 
string migong[31]; //输入的迷宫
char lujing[31][51]; //存储DRLU路径
int vis[30][50]; //标记已经走过的路
char k[4] = {'D', 'L', 'R', 'U'};
int fangxiang[4][2] = {{1, 0}, {0, -1}, {0, 1}, {-1, 0}};  //对应走去四个不同方向的坐标的变化
void queue_print(int x, int y){
	//输出结果
	if(x == 0 && y == 0) 
	return;
	//回溯 
	if(lujing[x][y] == 'D') queue_print(x-1, y);
	if(lujing[x][y] == 'L') queue_print(x, y + 1);
	if(lujing[x][y] == 'R') queue_print(x, y - 1);
	if(lujing[x][y] == 'U') queue_print(x + 1, y);
	cout<<lujing[x][y];
}
void BFS(){
	node start;
	start.x = 0;
	start.y = 0;
	vis[0][0] = 1; //第一个位置走过
	
	queue<node> q; //队列q
	q.push(start);  //第一个点入队
	
	while(!q.empty()){ //如果队列非空,即未遍历到最后一行 
	
	node now = q.front(); // 队首元素 --- 
	q.pop();  //出队 
	 
	 //到达出口 
	if(now.x == 29 && now.y == 49){
		queue_print(29, 49);
		break; 
	}
	
	//广度优先搜索 
	for(int i = 0; i < 4; ++i){
		node next;
		next.x = now.x + fangxiang[i][0];
		next.y = now.y + fangxiang[i][1];
		
		if(next.x <0 || next.x >= 30 || next.y < 0|| next.y >= 50){
			continue;
		}
		//路径已走或者迷宫有阻碍 
		if(vis[next.x][next.y] == 1 || migong[next.x][next.y] == '1')
		continue;
		
		vis[next.x][next.y] = 1;
		lujing[next.x][next.y] = k[i];
		
		q.push(next); 
	}
	} 
}
int main(){
	for(int i = 0; i < 30; ++i){
		cin>>migong[i];
	}
	//广度优先搜索 
	BFS();
	return 0;
} 

DFS解法

#include<iostream>
using namespace std;

string migong[31]; //输入的迷宫
int vis[30][50]; //标记已经走过的路
char k[4] = {'D', 'L', 'R', 'U'};
int fangxiang[4][2] = {{1, 0}, {0, -1}, {0, 1}, {-1, 0}};  //对应走去四个不同方向的坐标的变化
int minStep = 1000;
string minStr;

void DFS(int x, int y, int step, string str){
	if(x < 0 || x >=30 || y < 0 ||y >= 50)
	return;
	if(x == 29 && y ==49){
		if(step < minStep){
			minStep = step;
			minStr = str;
			cout<<minStep<<" "<<minStr<<endl;
		}
		return;
	}
	for(int i = 0; i < 4; ++i){
		int tx = x + vis[i][0];
		int ty = y + vis[i][1];
		if(vis[tx][ty] == 1 || migong[tx][ty] == '1')
		continue;
		vis[tx][ty] = 1;
		DFS(tx, ty, step + 1, str + k[i]);
		vis[tx][ty] = 0;
	}
} 
int main(){
	for(int i = 0; i < 30; ++i){
		cin>>migong[i];
	}
	//深度优先搜索 
	DFS(0, 0, 0, "");
	return 0;
} 

三、2017年省赛迷宫题目

X 星球的一处迷宫游乐场建在某个小山坡上。它是由 10 \times 1010×10 相互连通的小房间组成的。

房间的地板上写着一个很大的字母。我们假设玩家是面朝上坡的方向站立,则:

LL 表示走到左边的房间,
RR 表示走到右边的房间,
UU 表示走到上坡方向的房间,
DD 表示走到下坡方向的房间
。。。。。。

#include<iostream>
#include<string>
using namespace std;
//深度优先搜索
 
string ditu[11];
int vis[4][2] = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
// L, R, U, D
int lujing[11][11];
int biaoji[11][11];
int number = 0;

void DFS(int x, int y){
	int m = lujing[x][y];
	x += vis[m][0];
	y += vis[m][1];
	if(x < 0 || x >= 10 || y < 0 || y >= 10){
		number++;
		return;
	}
	if(biaoji[x][y] == 1){
		//绕圈
		return; 
	}
	biaoji[x][y] = 1;
	DFS(x, y);
}
int main(){
	for(int i = 0; i < 10; ++i)
	cin>>ditu[i];
	//路径转化
	for(int i = 0; i < 10; ++i){
		for(int j = 0; j < 10; ++j){
			if(ditu[i][j] == 'L')
			lujing[i][j] = 0;
			if(ditu[i][j] == 'R')
			lujing[i][j] = 1;
			if(ditu[i][j] == 'U')
			lujing[i][j] = 2;
			if(ditu[i][j] == 'D')
			lujing[i][j] = 3;
			
		}
	} 
	//枚举
	for(int i = 0; i < 10; ++i){
		for(int j = 0; j < 10; ++j){
			DFS(i, j);
			for(int it = 0; it < 11; ++it)
			for(int itt = 0; itt < 11; ++itt)
			biaoji[it][itt] = 0;
		}
	} 
	cout<<number;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值