动态规划之矩阵连乘问题(如何得到最优解的过程)

【问题】:矩阵链乘问题:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

1、按设计动态规划算法的步骤解题。
(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解(由子结构的最优解得到原先大问题的最优解)。
2、求算法的时间复杂性,和空间复杂性
3、体会动态规划和穷举法在解决该问题中的本质差异。

算法设计

#include<iostream>
using namespace std;
int m[100][100];
int s[100][100];
int p[100];

int MatrixChain(int *p,int n)
{
   
	for (int i = 1; i <= n; i++) {
   m[i][i] = 0;}//初始化单个矩阵的乘法次数都为0
        for (int r = 2; r <= n; r++)//r为矩阵连乘的长度,即矩阵个数
           for (int i = 1; i <= n - r+1; i++) {
   //i为矩阵连乘的起点
              int j=i+r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值