论文笔记
文章平均质量分 93
一些读书期间的论文笔记,我现在也不知道什么意思~~~
名字填充中
这个作者很懒,什么都没留下…
展开
-
Reasoning Over Semantic-Level Graph for Fact Checking
面向事实检验的语义层次图推理0. Abstract事实核查是一项具有挑战性的任务,因为核实声明的真实性需要对多个可检索的证据进行推理。在这项工作中,我们提出了一种适用于推理证据语义层次结构的方法。与大多数以往的工作不同,这些工作通常使用字符串连接或融合孤立证据语句的特征来表示证据语句,我们的方法基于语义角色标注获得的丰富的证据语义结构。我们提出了两种机制来利用证据的结构,同时利用像BERT、GPT或XLNet这样的预先训练好的模型的进步。具体来说,使用XLNet作为主干,我们首先利用图结构来重新定义单词翻译 2021-06-06 16:05:29 · 580 阅读 · 0 评论 -
GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification
基于图的证据聚集和推理用于事实验证Abstract之前工作知识信息提取,并没有证据通信,仅仅进行拼接处理。因此,这些方法无法掌握证据之间足够的关系和逻辑信息。提出一个a graph-based evidence aggregating and reasoning (GEAR) 基于图的证据聚集和推理。这使得信息能够在完全连接的证据图上传输,然后利用不同的聚合器来收集多证据信息。在FEVER分数67.10% 代码:https://githubcom/thunlp/GEARIntroduction因此翻译 2021-06-04 11:37:13 · 606 阅读 · 0 评论 -
Message Passing for Complex Question Answering over Knowledge Graphs
知识图谱上复杂问题回答的消息传递这篇文章还是没怎么看懂,看到很多NLP的基础不是很理解,这篇论文在实验部分写的感觉还是很精彩的原作者的github: https://github.com/svakulenk0/KBQA0 Abstract知识图谱问答(KBQA)已经从简单的单事实问题发展到需要图遍历和聚合的复杂问题。提出一种无监督解析输入问题并将知识图中的术语与一组可能的答案相匹配来传播置信度得分。提取实体、关系和类名,并将它们映射到图中的对应项。然后,这些映射的置信度得分通过图结构传播,以翻译 2021-06-03 20:36:13 · 441 阅读 · 1 评论 -
Modeling Semantics with Gated Graph Neural Networks for KBQA
基于门控图神经网络的知识库问答语义建模18年,对知识库问题的建模方法,放弃,没看完0. Abstract大多数知识库问答方法都是基于语义分析的。在本文中,我们解决了由多个实体和关系组成的复杂语义解析的学习向量表示问题。以前的工作主要集中在为一个问题选择正确的语义关系,而忽略了语义分析的结构:**实体之间的联系和关系的方向。**我们建议使用门控图神经网络(Gated Graph Neural Networks)来编码语义解析的图结构。我们在两个数据集上显示,图形网络优于所有没有明确建模结构的基线模型。错翻译 2021-06-03 08:34:30 · 227 阅读 · 0 评论 -
DGL第一章(官方教程)个人笔记
DGL库很友好出了汉语教程地址就在这个地方,这里基本从那边粘贴过来,算作个人笔记。第一章 图DGL的核心数据结构DGLGraph提供了一个以图为中心的编程抽象。 DGLGraph提供了接口以处理图的结构、节点/边 的特征,以及使用这些组件可以执行的计算。1.1 图的基本概念了解基本概念,图、图的表示、加权图与未加权图、同构与异构图、多重图1.2 图、节点和边DGL用唯一整数表示节点,即点ID;对应的两个端点ID表示一条边。根据添加顺序每条边有边ID。DGL中边是有方向的,即边(u,v)(u,v)原创 2021-06-02 11:23:58 · 4282 阅读 · 6 评论 -
DialogueGCN:A GCN for Emotion Recognition in Conversation
DialogueGCN: 一种用于会话情感识别的图形卷积神经网络DialogueGCN: A Graph Convolutional Neural Network forEmotion Recognition in Conversation语言环境建模的重要性,序列模型现有缺点是还是遗忘问题,从图的方面,改进了序列模型的缺点0. Abstract对话情感识别(Emotion recognition in conversation (ERC))。本文提出对话图卷积网络,一种基于图神经网络的ERC方法翻译 2021-06-01 16:32:28 · 1102 阅读 · 0 评论 -
Multi-hop RC across Multi-Documents by Reasoning HDE Graphs
基于异构图推理的多文档多跳阅读理解Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs(没找到代码)0. Abstract引入了一个具有不同类型节点和边的异构图,称为异构文档实体图(Heterogeneous Document-Entity,HDE)。HDE图的优势在于它包含不同粒度级别的信息,包括特定文档上下文中的候选、文档和实体。我们提出的模型可以在节点表示翻译 2021-05-31 15:47:38 · 261 阅读 · 0 评论 -
Fine-grained Fact Verification with Kernel GA Network
基于核图注意力网络的细粒度事实验证0. Abstract事实验证需要细粒度的自然语言推理能力,这种能力可以找到敏感的线索来识别语法和语义正确但没有很好支持的声明。提出了核图注意力网络( Kernel Graph Attention Network,KGAT ),该网络通过基于核注意力进行更细粒度的事实验证。给定一个声明和一组形成证据图的潜在证据语句(给一组句子形成证据图),KGAT为了更好测量证据节点重要性引入节点核,为了在图上执行细粒度证据传播,引入边缘核,以此进行更准确的事实验证。KGAT获得了70翻译 2021-05-29 11:14:53 · 1015 阅读 · 0 评论 -
Dynamically Fused Graph Network for Multi-hop Reasoning
用于多跳推理的动态融合图网络0. Abstract提出了一个Dynamically Fused Graph Network (动态融合图网络,DFGN)。受到人类循序渐进的推理行为的启发,DFGN包括一个动态融合层,它从给定查询中提到的实体开始,沿着从文本动态构建的实体图进行探索,并从给定文档中逐渐找到相关的支持实体。SOTA,此外,我们的分析表明,DFGN可以产生可解释的推理链。1. Introductionmulti-hop QA,给出一个查询,一系列文档,单并不是全部相关。答案需要从多个文档选翻译 2021-05-27 18:28:25 · 514 阅读 · 0 评论 -
Cognitive Graph for Multi-Hop Reading Comprehension at Scale
多跳阅读理解的认知图Abstract提出web-scale文档的多条QA框架—CogQA。该框架基于认知科学(cognitive science)中的双重过程理论,通过协调隐式提取模块(系统1)和显式推理模块(系统2),在迭代过程中逐步构建认知图。在给出准确答案的同时,我们的框架进一步提供了可解释的推理路径.提供了基于BERT和GNN的高效处理百万文档的HotpotQA fullwiki数据集中的多跳推理问题。F1值34.9,当时最优。引言MRC现存问题1) 推理问题,单段落倾向于匹配而非复杂推翻译 2021-05-24 20:36:17 · 502 阅读 · 0 评论 -
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning QA
用于多跳推理问答的双向注意实体图卷积网络-codeAbstract多跳问答要理解文档与查询之间的关系。本文BAG,用实体图节点之间关系和查询实体图的关系的注意力信息解决。图卷积网络用于获得实体图的节点的关系感知表示,该实体图是从具有多级特征的文档构建的。然后将双向注意力应用于图形和查询,以生成一个查询感知节点表示,用于最终预测。实验评估表明,BAG在QAngaroo WIKIHOP数据集上实现了一流的精度性能。1,引言讲了传统和缺陷,DrQA TriviaQA NarrativeQA 对SQuAD的翻译 2021-05-23 19:19:15 · 412 阅读 · 0 评论 -
Question Answering by Reasoning Across Documents with Graph Convolutional Networks
基于图卷积网络的跨文档推理问答基于图卷积网络的跨文档推理问答文章目录基于图卷积网络的跨文档推理问答摘要前言介绍方法2.1 数据集和任务抽象2.2 实体图上的推理2.3 节点注释实体关系图卷积网络(Entity Relational Graph Convolutional Network)实验总结摘要针对原来模型集中单文档单段落,作者提出一种基于图上的跨越多段落的文档推理。图上的实体是节点,边被编码成不同实体的关系(例如:文档内和文档边的引用)GCN应用于图并进行多步训练前言提示:这里可以添加翻译 2021-05-22 20:45:36 · 482 阅读 · 0 评论