不同于冒泡排序,选择排序是第一个位置与后面所有位置的数比较,如果不满足要求就调换位置,直到第N-1个元素与第N个元素交换位置,选择排序结束。从算法逻辑上看,选择排序是一种简单直观的排序算法,在简单选择排序过程中,所需移动记录的次数相对而言较少。
举例:用选择法对十个整数排序(12 34 5 689 -43 56 -21 0 24 65),由大到小。
排序过程:
输入:12 34 5 689 -43 56 -21 0 24 65
第一步:689 12 34 5 -43 56 -21 0 24 65
第二步:689 65 12 5 -43 34 -21 0 24 56
第三步:689 65 56 12 5 -43 34 -21 0 24
…
第九步:689 65 56 34 24 12 5 0 -21 -43
输出:689 65 56 34 24 12 5 0 -21 -43
C代码案例:
#include <stdio.h>
void sort(int x[], int n)
{
int i,j,k,t;
for(i=0;i<n-1;i++)
{
k=i;
for(j=i+1;j<n;j++)
{
if(x[j]>x[k]) k=j;
if(k!=i)
{
t=x[i];x[i]=x[k];x[k]=t;
}
}
}
}
int main()
{
void sort(int x[], int n);
int i;
int *p;
int a[10];
p=a; // 指针变量指向数组初地址
for(i=0;i<10;i++)
scanf("%d",p++);
p=a;
sort(p,10);
for(p=a,i=0;i<10;i++)
{
printf("%4d",*p);p++;
}
printf("\n");
return 0;
}
输出结果:
选择排序的复杂度:
简单选择排序的比较次数与序列的初始排序无关,与移动次数有关。假设待排序的系列有N个元素,则比较次数总是N(N-1)/2;当排序正序时,移动次数最少,为0
当序列反序时,移动次数最多,为3N(N-1)/2;
所以,综上,简单排序的时间复杂度为O(N*N);空间复杂度O(1)。
选择排序它并不耗费额外的内存空间,在简单选择排序过程中,所需移动记录的次数比较少。