R-时间序列分析

本文介绍了使用R语言进行时间序列分析,包括ARIMA模型的建立、差分处理、自相关性检验、单位根检验、模型预测以及指数平滑法的应用。通过实例展示了如何对航空旅客数据进行分析,确定最佳模型,并进行未来12个月的预测。
摘要由CSDN通过智能技术生成

                                      ARIMA模型

 

读取数据

data<-read.table(file='D:/python/anaconda/ARIMA/airPassenger.csv',header=T,sep=',',row.names='time')

数据格式如下:

          num

1949/1/1  112

1949/2/1  118

1949/3/1  132

1949/4/1  129

1949/5/1  121

1949/6/1  135

row.names(data) ---返回索引值(时间)

data$num   ---返回变量值

 

 

将数据转为ts对象

series<-ts(data,start=c(1949,1),end=c(1959,12),frequency=12)

 

绘制时序图

plot.ts(series,xlab='时间',ylab='乘客数/个')

 

 

boxplot(series) ---箱线图

boxplot.stats(series)

检查含有的异常值:

value = boxplot.stats(series)$out

index = which(data$num %in% value)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值