力扣-数组

本文介绍了双指针技术在内存管理和数组操作中的应用。对于一维数组,内存空间是连续的;而在二维数组中,C++中是连续的,Java中则不连续。文章重点讨论了移除元素和滑动窗口问题的解决方案。移除元素时,通过快慢指针实现O(n)时间复杂度和O(1)空间复杂度。滑动窗口问题中,通过双指针寻找满足条件的最小子数组,返回其长度。若不存在符合条件的子数组,则返回0。这些双指针技巧在数组处理中具有高效性。
摘要由CSDN通过智能技术生成

一、内存空间

一维数组的内存空间是连续的

二维数组:c++中式连续的,java中不连续
java

二、移除元素(双指针–快慢指针)

在这里插入图片描述
快指针做循环:

// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0; 
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {  
            if (val != nums[fastIndex]) { 
                nums[slowIndex++] = nums[fastIndex]; 
            }
        }
        return slowIndex;
    }
};

三、双指针(滑动窗口)

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

在这里插入图片描述

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        //j--后面的指针做循环
        for (int j = 0; j < nums.size(); j++) { 
            sum += nums[j];
            // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while (sum >= s) {
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值