线性表:
顺序存储结构,可理解为数组,在一块连续的内存中存储,查找速度快
链式存储结构,分散存储在内存中,按照逻辑次序连接再一起,插入删除快,分为单链表、循环链表、双向链表
栈与队列:
栈,后进先出的线性表,仅在栈顶进行插入和删除操作
队列,先进先出的线性表,在一端进行插入操作,在另一端进行删除操作
串:
由0个或多个字符组成的有限序列,使用线性表实现
树:
有且仅有一个特定的称为根(root)的结点,当n>1时,其余结点可分为m(m>0)个互补交互的有限集T1、T2...Tm,其中每一个集合本身又是一棵树,并称为根的子树(SubTree),树的创建及遍历通过递归实现
二叉树:二叉树的每个节点至多只有两颗子树,二叉树有左右之分,次序不能颠倒,二叉树又分为满二叉树和完全二叉树
满二叉树:如果一棵二叉树的结点要么有两个叶子结点,要么它有两个子结点,这样的树就是满二叉树
完全二叉树:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。需要注意的是,满二叉树肯定是完全二叉树,而完全二叉树不一定是满二叉树
线索二叉树:二叉树的节点包含前驱和后继的指针的树
二叉排序树:又称二叉查找树,它是一颗空树或者具备以下性质,所有左子树节点的值均小于根节点的值,所有右子树节点的值均大于根节点的值,左右子树也分别为二叉排序树
平衡二叉树(AVL树):二叉排序树升级版,每个节点左子树和右子树高度差最多为1,否则自身进行调整,从而达到平衡
2-3树:是一个多路查找树,每一个节点都具有两个孩子(两节点)或三个孩子(三节点),二节点包含一个元素两个孩子或没有,一个三节点包含一大一小两个元素和三个孩子或没有
2-3-4树:2-3树的拓展,增加了四节点的使用,一个四节点包含大中小三个元素和四个孩子货没有
B树:一种平衡的多路查找树,2-3树和2-3-4树都是B树的特例,节点最大的孩子数目称为B树的阶,2-3树为3阶B树,2-3-4树为4阶B树,如果树不为空至少有两颗子树,所有叶子节点都位于同一层
B+树:B树升级版,分支节点的元素可能会在叶子节点中再次列出 ,同时叶子节点保存着指向后一个叶子节点的指针
二叉树遍历:
1.前序遍历:若二叉树为空则空操作返回,否则先访问根节点,然后前序遍历左子树,再前序遍历右子树(遍历顺序为:ABDGHCEIF)
2.中序遍历:若二叉树为空则空操作返回,否则从左子树叶子节点开始,中序遍历左子树,然后访问根节点,最后中序遍历右子树(遍历顺序为:GDHBAEICF)
3.后序遍历:若二叉树为空则空操作返回,否则从左到右先叶子后节点的方式遍历访问左右子树,最后访问根节点(遍历顺序为:GHDBIEFCA)
4.层序遍历:若二叉树为空则空操作返回,否则从树的第一层也就是根节点开始访问,从上而下逐层遍历,在同一层中,按照从左到右的顺序对节点逐个访问(遍历结果为:ABCDEFGHI)