辗除法--欧几里得算法求解俩个数的最大公约数,最小公倍数

辗除法:
设两数为a、b(b<a),求它们最大公约数(a、b)的步骤如下:
用a/b,得a/b=q......r1(0≤r)。若r1=0,则(a,b)=b;
若r1≠0,则再用b/r1,得b/r1=q......r2 (0≤r2).
若r2=0,则(a,b)=r1,
若r2≠0,则继续用r1/r2,……如此下去,直到能整除为止。其最后一个非零余数即为(a,b)。

最大公倍数等于a*b/公约数

 

代码实现:

int main()
{
    int num1,num2;
    int a,b;
    int gongyue;
    while(1)
    {   
        printf("please input two nums:\n");
        scanf("%d%d",&num1,&num2);
        //保证a大于b
        a = num1>num2?num1:num2;
        b = num1 + num2 - a;
        while(1)
        {   
            int yu; //保存余数
            if( (yu = a % b) == 0 ) 
            {   
                gongyue = b;
                break;
            }else{
                a = b;
                b = yu; 
            }   
        }   
        printf("gongyue:%d\n",gongyue);
        printf("gongbei:%d\n",num1*num2/gongyue);
    }   
}                              

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值