题目链接:https://www.luogu.org/problemnew/show/P2984
Description:
Farmer John有B头牛(1<=B<=25000),有N(2*B<=N<=50000)个农场,编号1-N,有M(N-1<=M<=100000)条双向边,第i条边连接农场R_i和S_i(1<=R_i<=N;1<=S_i<=N),该边长L_i(1<=L_i<=2000)。住在农场P_i的奶牛A(1<=P_i<=N),它想送一份新物给在农场Q_i(1<=Q_i<=N)的奶牛B,但奶牛A必须先到FJ(居住在编号1的农场)那取礼物,然后送给奶牛B。求:奶牛A至少需要走多远的路程?
Sample Input
6 7 3
1 2 3
5 4 3
3 1 1
6 1 9
3 4 2
1 4 4
3 2 2
2 4
5 1
3 6
Sample Output
6
6
10
思路
拿到这题,第一反应是最短路,要使总长最短,则要同时满足奶牛A所在农场到FJ距离最短与FJ到奶牛B所在农场距离最短.看似可以做两次最短路解决,但是本题最多有25000头奶牛,所以不能每头牛都求两次最短路.
通过观察,我们可以发现,既然任何奶牛都要经过1号点,路又为双向边,所以奶牛行走总长可以看作FJ到A的路程+FJ到B的路程.然后只用从FJ出发,用一个dis数组把FJ到所有点的最短路都记上,dis[a]+dis[b]即为所求.
本题可以使用SPFA(其实就是Bellman-Ford的队列实现好叭)或Dijkstra算法求单源最短路
Code:
- SPFA版:
#include<bits/stdc++.h>
using namespace std;
int head[50002],dis[50002];
bool flag[50002];
queue<int> q;
struct edge{
int nxt,to,cost;
}e[1000002];//链式前向星
int n,m,cnt,Q;
inline void Add(int u,int v,int z){
e[++cnt].nxt=head[u];
e[cnt].to=v;
e[cnt].cost=z;
head[u]=cnt;
}
int main(){
scanf("%d%d%d",&n,&m,&Q);
for(int i=1,x,y,z;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
Add(x,y,z),Add(y,x,z);
}
for(int i=2;i<=n;i++)
dis[i]=0x7fffffff;
q.push(1),flag[1]=1;//起点入队
while(!q.empty()){
int tmp=q.front();q.pop();//取出队首
flag[tmp]=0;
for(int i=head[tmp];i;i=e[i].nxt){//枚举相邻点
int to=e[i].to;
if(dis[to]>dis[tmp]+e[i].cost){//使dis[to]更优
dis[to]=dis[tmp]+e[i].cost;
if(!flag[to])
q.push(to),flag[to]=1;//入队
}
}
}
for(int i=1,x,y;i<=Q;i++){
scanf("%d%d",&x,&y);
printf("%d\n",dis[x]+dis[y]);
}
}
- 附Dijkstra堆优化版
#include<bits/stdc++.h>
using namespace std;
template<typename T>inline void read(T &a){
T x=0;
bool f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')
f=0;
ch=getchar();
}
while(isdigit(ch))
x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
a=f?x:-x;
}
struct Node{
int nex,to,wi;
}e[250002];
int n,m,b,tot,dis[250002],head[250002];
bool vis[250002];
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > > Q;
inline void Add(int ai,int bi,int ci){
e[++tot].to=bi;
e[tot].wi=ci;
e[tot].nex=head[ai];
head[ai]=tot;
}
int main(){
read(n),read(m),read(b);
for(int i=1,ri,si,li;i<=m;++i)
read(ri),read(si),read(li),Add(ri,si,li),Add(si,ri,li);
for(int i=2;i<=n;++i)
dis[i]=0x7fffffff;
Q.push(make_pair(0,1));
while(!Q.empty()){
int u=Q.top().second;Q.pop();
if(vis[u])
continue;
vis[u]=1;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(dis[v]>dis[u]+e[i].wi){
dis[v]=dis[u]+e[i].wi;
Q.push(make_pair(dis[v],v));
}
}
}
for(int i=1,u,v;i<=b;++i){
read(u);read(v);
printf("%d\n",dis[u]+dis[v]);
}
}