为了没有JZOJ账号的OIER看题目,这里用luogu的题目链接
文章目录
1.游荡的奶牛
这一题……有点玄学。
我的方法是卡过去的。(RP好)
一开始我是想用DP,f[i,j]是四周的f和,也就是f[i-1,j]+f[i+1,j]+f[i,j-1]+f[i,j+1]。但是在考试中,我不想打太久,于是就用了
D
F
S
DFS
DFS。
思路如下:
首先,用字符数组输入(卡了好久,不会字符数组操作),记录。之后直接用一个
D
F
S
DFS
DFS。
D
F
S
DFS
DFS内容:用x,y记录位置,time记录已经用的时间(记录剩余时间也可以)。for循环方向,递归下一层前判断走这个方向有没有越界。如果越界就走下一个方向。
那代码是这样的吗:
void dg(int x,int y,int time)
{
if(time==t)
{
if(x==x2&&y==y2)
{
ans++;
}
return;
}
else
{
for(int i=0;i<4;i++)
{
int nx=x+fx[i][0],ny=y+fx[i][1];
if(nx>0&&ny>0&&nx<=n&&ny<=m&&ch[nx][ny]!='*')
{
dg(nx,ny,time+1);
}
}
}
}
这样一定会超时,所以需要一个剪枝:如果两点之间的曼哈顿距离((abs(nx-x2)+abs(ny-y2)<=t-time))超过剩余时间(t-time)直接退出。因为如果超过,那无论如何也不能再剩余时间内赶回去。
所以代码应该是这样:
void dg(int x,int y,int time)
{
if(time==t)
{
if(x==x2&&y==y2)
{
ans++;
}
return;
}
else
{
for(int i=0;i<4;i++)
{
int nx=x+fx[i][0],ny=y+fx[i][1];
if(nx>0&&ny>0&&nx<=n&&ny<=m&&ch[nx][ny]!='*'&&(abs(nx-x2)+abs(ny-y2)<=t-time))
{
dg(nx,ny,time+1);
}
}
}
}
最后还要加一个特判(加了这个特判能直接找到大部分答案为0的样例)
如果起点和终点的曼哈顿距离是奇数,但时间是偶数,或者曼哈顿距离是偶数,时间是奇数,直接输出0。不会解释,但可以自己手推。
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int i,j,m,n,t,ans;
int fx[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
int x1,y1,x2,y2;
char ch[110][110];
void dg(int x,int y,int time)
{
if(time==t)
{
if(x==x2&&y==y2)//如果时间刚好且到了这个位置就++
{
ans++;
}
return;
}
else
{
for(int i=0;i<4;i++)//枚举方向
{
int nx=x+fx[i][0],ny=y+fx[i][1];
if(nx>0&&ny>0&&nx<=n&&ny<=m&&ch[nx][ny]!='*'&&(abs(nx-x2)+abs(ny-y2)<=t-time))//剪枝
{
dg(nx,ny,time+1);
}
}
}
}
int main()
{
freopen("ctravel.in","r",stdin);
freopen("ctravel.out","w",stdout);
scanf("%d%d%d",&n,&m,&t);
for(i=1;i<=n;i++)
{
scanf("%s",ch[i]+1);//输入(在这里卡了很久)
}
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
if((abs(x1-x2)+abs(y1-y2))%2!=t%2)//超强的特判
{
printf("0");
fclose(stdin);fclose(stdout);
return 0;
}
ans=0;
dg(x1,y1,0);
printf("%d",ans);
fclose(stdin);fclose(stdout);
return 0;
}
2.渡河问题
DP直接水过。
本次比赛最水,没有之一。
基本思路
如果没理解题目,去看!(有点坑,不是很大,但容易掉)
FJ载1头牛是
m
+
m
1
,
2
m+m_1,2
m+m1,2头牛是
m
+
m
1
+
m
2
m+m_1+m_2
m+m1+m2
所以我们只需要用
s
u
m
i
sum_i
sumi记录下运
i
i
i头奶牛所需要的时间,
f
i
f_i
fi是运前
i
i
i个奶牛所需要的时间。那接下来就很简单了。可以推出方程:
f
i
=
m
a
x
(
f
i
,
f
i
−
j
+
s
u
m
j
+
m
+
m
)
f_i=max(f_i,f_{i-j}+sum_j+m+m)
fi=max(fi,fi−j+sumj+m+m)(这里的初始值是没有+m的,而且FJ还要回来,所以加两次m)
最后的答案别忘了要减去m,也就是输出 f n − m f_n-m fn−m
AC代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int i,j,m,n,l;
int f[5000],sum[5000];
int main()
{
freopen("river.in","r",stdin);
freopen("river.out","w",stdout);
sum[0]=0;
memset(f,0x5f,sizeof(f));
f[0]=0;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
{
scanf("%d",&l);
sum[i]=sum[i-1]+l;
}
for(i=1;i<=n;i++)
{
for(j=i;j>=1;j--)
{
f[i]=min(f[i],f[i-j]+sum[j]+m+m);
}
}
printf("%d",f[n]-m);
fclose(stdin);fclose(stdout);
}