JZOJ 2019.04.20【NOIP普及组】模拟赛C组题解

为了没有JZOJ账号的OIER看题目,这里用luogu的题目链接

1.游荡的奶牛

这一题……有点玄学。
我的方法是卡过去的。(RP好)
一开始我是想用DP,f[i,j]是四周的f和,也就是f[i-1,j]+f[i+1,j]+f[i,j-1]+f[i,j+1]。但是在考试中,我不想打太久,于是就用了 D F S DFS DFS

思路如下:

首先,用字符数组输入(卡了好久,不会字符数组操作),记录。之后直接用一个 D F S DFS DFS
D F S DFS DFS内容:用x,y记录位置,time记录已经用的时间(记录剩余时间也可以)。for循环方向,递归下一层前判断走这个方向有没有越界。如果越界就走下一个方向。
那代码是这样的吗:

void dg(int x,int y,int time)
{
	if(time==t)
	{
		if(x==x2&&y==y2)
		{
			ans++;
		}
		return;
	}
	else
	{
		for(int i=0;i<4;i++)
		{
			int nx=x+fx[i][0],ny=y+fx[i][1];
			if(nx>0&&ny>0&&nx<=n&&ny<=m&&ch[nx][ny]!='*')
			{
				dg(nx,ny,time+1);
			}
		}
	}
}

这样一定会超时,所以需要一个剪枝:如果两点之间的曼哈顿距离((abs(nx-x2)+abs(ny-y2)<=t-time))超过剩余时间(t-time)直接退出。因为如果超过,那无论如何也不能再剩余时间内赶回去。
所以代码应该是这样:

void dg(int x,int y,int time)
{
  if(time==t)
  {
  	if(x==x2&&y==y2)
  	{
  		ans++;
  	}
  	return;
  }
  else
  {
  	for(int i=0;i<4;i++)
  	{
  		int nx=x+fx[i][0],ny=y+fx[i][1];
  		if(nx>0&&ny>0&&nx<=n&&ny<=m&&ch[nx][ny]!='*'&&(abs(nx-x2)+abs(ny-y2)<=t-time))
  		{
  			dg(nx,ny,time+1);
  		}
  	}
  }
}

最后还要加一个特判(加了这个特判能直接找到大部分答案为0的样例)

如果起点和终点的曼哈顿距离是奇数,但时间是偶数,或者曼哈顿距离是偶数,时间是奇数,直接输出0。不会解释,但可以自己手推。

AC代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int i,j,m,n,t,ans;
int fx[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
int x1,y1,x2,y2;
char ch[110][110];

void dg(int x,int y,int time)
{
	if(time==t)
	{
		if(x==x2&&y==y2)//如果时间刚好且到了这个位置就++
		{
			ans++;
		}
		return;
	}
	else
	{
		for(int i=0;i<4;i++)//枚举方向
		{
			int nx=x+fx[i][0],ny=y+fx[i][1];
			if(nx>0&&ny>0&&nx<=n&&ny<=m&&ch[nx][ny]!='*'&&(abs(nx-x2)+abs(ny-y2)<=t-time))//剪枝
			{
				dg(nx,ny,time+1);
			}
		}
	}
}
int main()
{
	freopen("ctravel.in","r",stdin);
	freopen("ctravel.out","w",stdout);
	scanf("%d%d%d",&n,&m,&t);
	for(i=1;i<=n;i++)
	{
		scanf("%s",ch[i]+1);//输入(在这里卡了很久)
	}
	scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
	if((abs(x1-x2)+abs(y1-y2))%2!=t%2)//超强的特判
	{
		printf("0");
		fclose(stdin);fclose(stdout);
		return 0;
	}
	ans=0;
	dg(x1,y1,0);
	printf("%d",ans);
	fclose(stdin);fclose(stdout);
	return 0;
}

2.渡河问题

DP直接水过。
本次比赛最水,没有之一。

基本思路

如果没理解题目,去看!(有点坑,不是很大,但容易掉)
FJ载1头牛是 m + m 1 , 2 m+m_1,2 m+m1,2头牛是 m + m 1 + m 2 m+m_1+m_2 m+m1+m2
所以我们只需要用 s u m i sum_i sumi记录下运 i i i头奶牛所需要的时间, f i f_i fi是运前 i i i个奶牛所需要的时间。那接下来就很简单了。可以推出方程: f i = m a x ( f i , f i − j + s u m j + m + m ) f_i=max(f_i,f_{i-j}+sum_j+m+m) fi=max(fi,fij+sumj+m+m)(这里的初始值是没有+m的,而且FJ还要回来,所以加两次m)

最后的答案别忘了要减去m,也就是输出 f n − m f_n-m fnm

AC代码

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int i,j,m,n,l;
int f[5000],sum[5000];
int main()
{
	freopen("river.in","r",stdin);
	freopen("river.out","w",stdout);
	sum[0]=0;
	memset(f,0x5f,sizeof(f));
	f[0]=0;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&l);
		sum[i]=sum[i-1]+l;
	}
	for(i=1;i<=n;i++)
	{
		for(j=i;j>=1;j--)
		{
			f[i]=min(f[i],f[i-j]+sum[j]+m+m);
		}
	}
	printf("%d",f[n]-m);
	fclose(stdin);fclose(stdout);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值