DP10 最大子矩阵

题解:就是首先选择不同的行(第i行和第j行,这个行进行遍历,得到所有选取行的可能),确定好所选行之后就是求(第i行到第j行每列的和,组成一个数组),对这个数组求最大子序列的和。

描述

已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。 比如,如下4 * 4的矩阵 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 的最大子矩阵是 9 2 -4 1 -1 8 这个子矩阵的大小是15。

输入描述:

输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。 再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。 已知矩阵中整数的范围都在[-127, 127]。

输出描述:

输出最大子矩阵的大小。

示例1

输入:

4
0 -2 -7 0
9 2 -6 2
-4 1 -4  1
-1 8  0 -2

复制输出:

15
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std;
int a[105][105];
int sum[105][105];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            scanf("%d",&a[i][j]);
            sum[i][j]=0;
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            sum[j][i]=sum[j-1][i]+a[j][i];
        }
    }
    int s[105];
    int Max=-1e9;
    for(int i=1;i<=n;i++)
        for(int j=i;j<=n;j++)
        {
            for(int l=0;l<105;l++)
                s[l]=0;
            for(int k=1;k<=n;k++)
            {
                s[k]=sum[j][k]-sum[i-1][k];
            }
            int dp[105];
            dp[0]=0;
            for(int p=1;p<=n;p++)
            {
                dp[p]=max(dp[p-1]+s[p],s[p]);
                if(dp[p]>Max)
                {
                    Max=dp[p];
                }
            }
            
        }
    printf("%d\n",Max);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值