题解:就是首先选择不同的行(第i行和第j行,这个行进行遍历,得到所有选取行的可能),确定好所选行之后就是求(第i行到第j行每列的和,组成一个数组),对这个数组求最大子序列的和。
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。 比如,如下4 * 4的矩阵 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 的最大子矩阵是 9 2 -4 1 -1 8 这个子矩阵的大小是15。
输入描述:
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。 再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。 已知矩阵中整数的范围都在[-127, 127]。
输出描述:
输出最大子矩阵的大小。
示例1
输入:
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
复制输出:
15
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std;
int a[105][105];
int sum[105][105];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
sum[i][j]=0;
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
sum[j][i]=sum[j-1][i]+a[j][i];
}
}
int s[105];
int Max=-1e9;
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
{
for(int l=0;l<105;l++)
s[l]=0;
for(int k=1;k<=n;k++)
{
s[k]=sum[j][k]-sum[i-1][k];
}
int dp[105];
dp[0]=0;
for(int p=1;p<=n;p++)
{
dp[p]=max(dp[p-1]+s[p],s[p]);
if(dp[p]>Max)
{
Max=dp[p];
}
}
}
printf("%d\n",Max);
return 0;
}