根据数据范围判断时间复杂度

这篇博客探讨了在ACM竞赛、笔试和在线编程平台中,针对不同数据范围如何选择合适的算法和时间复杂度。给出了n的界限与对应的最佳算法选择,例如n≤1000适合使用O(n²)的算法,而n≤100000可能需要O(nlogn)的解决方案。强调了根据问题规模选择适当复杂度的重要性。
摘要由CSDN通过智能技术生成

在这里插入图片描述

一般ACM或者笔试题,或者力扣上的题目的时间限制是1秒或2秒。
在这种情况下,C++代码中的操作次数控制在 1e7 为最佳。

我们做题时可以根据不同数据范围,知道代码的时间复杂度和算法该如何选择(n越小说明我们可以使用越暴力、时间复杂度越高的解法):

n≤30, 指数级别, dfs+剪枝,状态压缩dp
n≤100 => O(n3),floyd,dp
n≤1000 => O(n2),O(n2logn),dp,二分
分界点(一旦n到达1e4,就不适合n2的暴力解法)
n≤10000 => O(n∗√n),块状链表
n≤100000 => O(nlogn) => 各种sort,线段树、树状数组、set/map、heap、dijkstra+heap、spfa、求凸包、求半平面交、二分
n≤1000000 => O(n), 以及常数较小的 O(nlogn) 算法 => hash、双指针扫描、kmp、AC自动机,常数比较小的 O(nlogn) 的做法:sort、树状数组、heap、dijkstra、spfa
n≤10000000 => O(n),双指针扫描、kmp、AC自动机、线性筛素数
n≤109 => O(√n),判断质数
n≤1018 => O(logn),最大公约数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值