第九届蓝桥杯-C(b组)-测试次数(dp动态规划)

标题:测试次数

x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。

x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。

如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。
特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。
如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n

为了减少测试次数,从每个厂家抽样3部手机参加测试。

某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?

请填写这个最多测试次数。

注意:需要填写的是一个整数,不要填写任何多余内容。

思路:

在只有一部手机的情况下:
如果只有一层,测试次数只能为1,摔下去坏了,耐摔指数便为0;未坏,耐摔指数变为1。
如果有两层,则只能从第一层开摔(若从第二层开始摔,万一摔坏就没有手机了),测试次数为2。

eg.
3手机 3层
最佳策略:是指从哪一层开始摔
最坏运气:总朝着让你多摔的方向发展

从中间扔,是最佳策略:
好:1(2层摔,好)+1(在3层摔)
坏:1(2层摔,摔坏)+1(在1层摔)

这种题就是一个dp,因为是从小规模->大规模的递推!!!

在这里插入图片描述

代码如下

#include<bits/stdc++.h>
using namespace std;
const int N = 1000;
int f1[N+1],f2[N+1],f3[N+3];//记录手机数为1,2,3时,对应各层的测试次数 
int main()
{
	//1部手机的情况 
	for(int i = 1; i <= N; i++){
		f1[i] = i;
	}
	//2部手机的情况
	for(int i = 1; i <= N; i++){
		int ans = INT_MAX;
		//尝试1~i若干方案,最终记录所有方案中次数最小的 
		for(int j = 1; j <= i; j++){//在j层扔第一部手机 
			//1 ok 2 不ok 
			int maxx = 1+max(f2[i-j],f1[j-1]);
			ans = min(ans, maxx);
		}
		f2[i] = ans;
	} 
	//3部手机的情况
	for(int i = 1; i <= N; i++){
		int ans = INT_MAX;
		//尝试1~i若干方案,最终记录所有方案中次数最小的 
		for(int j = 1; j <= i; j++){//在j层扔第一部手机 
			//1 ok 2 不ok 
			int maxx = 1+max(f3[i-j],f2[j-1]);
			ans = min(ans, maxx);
		}
		f3[i] = ans;
	} 
	cout<<f3[N]<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值