简单的背包问题—贪心
当物品可以分割时,要求在容量固定为M的背包中装入的物品价值达到最大。
问题描述:
现在有n种物品,每种物品有一定的重量w和一定的价值v,背包中只能带走m重量的东西,每种物品只能拿一样,物品可以分割,怎么运才能使带走的东西价值最大呢?
- 贪心策略确定:
① 每次选择价值最大?
② 每次选择重量最大?
③ 每次选择单位重量的价值最大(v/w)?
三种选择方案,很显然,既然可以分割当然选择性价比最大的。 - 数据结构
使用结构体来存储物品的重量w、物品的价值v和物品的性价比p,性价比即单位重量的价值v/w;`结构体数组来存储物品。
定义sum来存储背包能够运走的最大价值,初始化为0;
struct Treasure{
double w;//物品重量
double v;//物品价值
double p;//性价比---单位重量的价值
}S[M];
- 设计算法—根据贪心策略,每次运走性价比最大的物品,为了操作方便,可以按照性价比由大到小的规则对结构体数组进行排序。同样使用到sort(begin,end,compare)函数,因为sort()函数默认是升序排列,而我们需要的是降序,这时就需要自己编写compare函数:``
bool cmp(Treasure a1, Treasure a2){
return a1.p > a2.p;
}
//再调用sort函数就可以实现数组降序排列
sort(S, S+n, cmp);//对结构体数组进行排序
排好序,然后根据贪心策略每次选取性价比最大的物品,直到达到背包的m。每次选取性价比最大的物品时,判断是否小于m,如果小于则放入,sum加上当前物品的价值,m减去当前物品的重量w,否则就取该物品的一部分m*p,此时m==0,程序结束,sum即得到的最大价值。
for(int i = 0; i < n; i++){
if(S[i].w < m){
m -= S[i].w;
sum += S[i].p;
}else{
sum += S[i].p*m;
break;
}
}
- 完整代码:
//简单的背包问题
/*
物品可分割,可装满容器
*/
#include<iostream>
#include<algorithm>
using namespace std;
const int M = 1000005;
//背包结构体
struct three{
double w;
double v;
double p;
}S[M];
bool cmp(three a, three b){//添加比较规则
return a.p > b.p;
}
int main()
{
int n;//n个物品
double m;//承载能力
cout<<"输入物品数量和承载能力:"<<endl;
cin>>n>>m;
cout<<"输入每个宝物的重量和价值:"<<endl;
for(int i = 0; i < n; i++){
cin>>S[i].w>>S[i].v;
S[i].p = S[i].v/S[i].w;//性价比
}
sort(S, S+n, cmp);
double sum = 0.0;//表示贪心记录运走宝物的价值
for(int i = 0; i < n; i++){
if(m > S[i].w){
m-=S[i].w;
sum+=S[i].v;
}else{
sum +=S[i].p * m;
break;//容器已经装满,跳出循环
}
}
cout<<"装得的最大价值:"<< sum<<endl;
}
物品可分割的装载问题即背包问题,如果物品不可分割呢,还是利用背包问题的贪心策略,得到的值是最优解吗?很显然,不一定是最优解,仅仅是最优解的近似值。
在物品不可分割的情况下,已经不具备贪心选择性质,原问题的整体最优解无法通过一系列局部最优解的选择得到,这时的背包问题称之为0-1背包问题,后续慢慢讨论。