全概率与贝叶斯公式(重口味解读)

本文深入浅出地解析了概率论中的核心概念——互斥事件与独立事件的区别,通过生动的例子说明了全概率公式和贝叶斯公式的应用,帮助读者理解如何计算不同条件下事件发生的概率。

相互互斥:表示两个事件发生互不影响,同一时间,我不能同时在单位和家里
相互独立:表示两个事件不能同时发生,拉屎和撒尿可以分开做,同一时间同时干这两件事或其中一件都可以
互斥事件一定不独立(因为一件事的发生导致了另一件事不能发生);独立事件一定不互斥,(如果独立事件互斥, 那么根据互斥事件一定不独立,那么就矛盾了)

全概率公式
全概率就是表示达到某个目的,有多种方式(或者造成某种结果,有多种原因),问达到目的的概率是多少(造成这种结果的概率是多少)?
例如,我要拉屎,我有80%马桶,也可以用19%蹲便,也可以拉在1%裤子里的选择,但是我拉屎还便秘,用马桶就50%便秘,蹲便40%便秘,裤子10%便秘,那么我痛快拉屎的概率是多少呢
痛快拉屎概率=0.80.5+0.190.4+0.01*0.1

贝叶斯公式
贝叶斯公式就是当已知结果,问导致这个结果的第i原因的可能性是多少?执果索因
拿上题为例,假设我已经痛痛快快拉了屎,那么我选择拉裤子里的概率是多少?
拉裤子里概率=0.01*0.1/痛快拉屎概率

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值