第五章 多元函数微分学

第五章 多元函数微分学

1.多元函数极限、连续、偏导数与全微分

1.1二元函数的极限与连续

重极限定义:
在这里插入图片描述
【注意】:趋向 是具有任意性的。
二元函数连续:
在这里插入图片描述
连续函数的性质:

  1. 联系函数的和、差、积、商均是连续函数,连续函数的复合函数仍为连续函数。
  2. (最大值最小值定理)在有界闭区域上的连续函数,在该区域上有最大最小值。
  3. (介值定理)在有界区域上的连续函数,可取到它在该区域上的最大最小值之间的任意值。
1.2二元函数的偏导数与全微分

1.偏导数的概念
在这里插入图片描述
2.注意联想偏导数几何意义
3.全微分概念:
在这里插入图片描述
4.可微的必要条件
在这里插入图片描述
5.可微的充分条件
在这里插入图片描述
6.多元函数连续、可导、可微之间的关系
在这里插入图片描述
【注意】:罪魁祸首在可偏导,二元函数可偏导仅仅在x,y轴方向上,连续与可微是用重极限定义的,是从各个方向趋近的。

2.多元函数微分法(复合函数求导;隐函数求导)

2.1复合函数偏导数与全微分

1.求导法则:记住链式法则以及树形图法

  • 多元函数与一元函数的复合
    在这里插入图片描述

  • 多元函数与多元函数的复合
    在这里插入图片描述
    2.高阶偏导数及混合偏导数

  • 二阶偏导
    在这里插入图片描述

  • 混合偏导与次序无关问题
    在这里插入图片描述
    3.全微分形式不变性
    在这里插入图片描述

2.2隐函数偏导数与全微分
  • 由一个方程确定的隐函数(一元函数)-----一个函数一个自变量
    在这里插入图片描述
  • 由一个方程确定的隐函数(二元函数)-----一个函数二个自变量
    在这里插入图片描述
  • 由方程组确定的隐函数(一元函数)-----二个函数一个自变量
    在这里插入图片描述
  • 由方程组确定的隐函数(二元函数)----二个函数二个自变量
    在这里插入图片描述

3.极值与最值

3.1无条件极值

1.极值与极值点的概念(略)
2.多元函数驻点的概念
函数的一阶导数为0的点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
3.多元函数取得极值的必要条件
在这里插入图片描述
4.二元函数取得极值的充分条件(仅使用二元型)
在这里插入图片描述

3.2条件极值(拉格朗日乘数法)

在这里插入图片描述

4.方向导数与梯度 多元函数几何应用 泰勒定理

4.1方向导数

在这里插入图片描述

4.2梯度

在这里插入图片描述

4.3曲面的切平面

在这里插入图片描述

4.4曲线的切线与切平面

在这里插入图片描述
在这里插入图片描述

4.5泰勒定理

1.二元函数泰勒展开式
在这里插入图片描述
2.拉格朗日余项
在这里插入图片描述
3.拉格朗日中值定理:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值