第五章 多元函数微分学
1.多元函数极限、连续、偏导数与全微分
1.1二元函数的极限与连续
重极限定义:
【注意】:趋向 是具有任意性的。
二元函数连续:
连续函数的性质:
- 联系函数的和、差、积、商均是连续函数,连续函数的复合函数仍为连续函数。
- (最大值最小值定理)在有界闭区域上的连续函数,在该区域上有最大最小值。
- (介值定理)在有界区域上的连续函数,可取到它在该区域上的最大最小值之间的任意值。
1.2二元函数的偏导数与全微分
1.偏导数的概念
2.注意联想偏导数几何意义
3.全微分概念:
4.可微的必要条件
5.可微的充分条件
6.多元函数连续、可导、可微之间的关系
【注意】:罪魁祸首在可偏导,二元函数可偏导仅仅在x,y轴方向上,连续与可微是用重极限定义的,是从各个方向趋近的。
2.多元函数微分法(复合函数求导;隐函数求导)
2.1复合函数偏导数与全微分
1.求导法则:记住链式法则以及树形图法
-
多元函数与一元函数的复合
-
多元函数与多元函数的复合
2.高阶偏导数及混合偏导数 -
二阶偏导
-
混合偏导与次序无关问题
3.全微分形式不变性
2.2隐函数偏导数与全微分
- 由一个方程确定的隐函数(一元函数)-----一个函数一个自变量
- 由一个方程确定的隐函数(二元函数)-----一个函数二个自变量
- 由方程组确定的隐函数(一元函数)-----二个函数一个自变量
- 由方程组确定的隐函数(二元函数)----二个函数二个自变量
3.极值与最值
3.1无条件极值
1.极值与极值点的概念(略)
2.多元函数驻点的概念
函数的一阶导数为0的点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
3.多元函数取得极值的必要条件
4.二元函数取得极值的充分条件(仅使用二元型)
3.2条件极值(拉格朗日乘数法)
4.方向导数与梯度 多元函数几何应用 泰勒定理
4.1方向导数
4.2梯度
4.3曲面的切平面
4.4曲线的切线与切平面
4.5泰勒定理
1.二元函数泰勒展开式
2.拉格朗日余项
3.拉格朗日中值定理: