算法与数据结构之递归行为时间复杂度估算

对递归行为时间复杂度的估算需要使用到master公式
master公式:
T(N) = a*T(N/b) + O(N^d)
T(N):样本量大小为N的情况下,时间复杂度
N/b:子过程的样本量
a:子过程发生的次数,不是一共分了多少次,从代码上看分的次数,比如用递归求一组数据的最大值,从中间分开求出左边最大值,在求出右边最大值,最后求整组数据的最大值,在这个过程中子过程发生的次数为两次
O(N^d):除去调用子过程外,剩下的时间复杂度。在以上求最大值的递归过程中d = 0,因为除去子过程,只剩下一个求出最大值的过程,为O(1),
只要满足上述的master公式,则时间复杂度为:

  1. log(b,a) > d -> 复杂度为O(N^log(b,a))
  2. log(b,a) = d -> 复杂度为O(N^d * logN)
  3. log(b,a) < d -> 复杂度为O(N^d)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值