题目:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
思路:
a.假设第一次跳的是1级台阶,那么剩下n-1阶的跳法是f(n-1);
b.假设第一次跳的是2级台阶,那么剩下n-2阶的跳法是f(n-2);
c.由ab假设可以得出总跳法f(n)=f(n-1)+f(n-2),f(1)=1,f(2)=2.
d.综上,跳台阶为斐波那契数列变形。
方法:
1.递归,自顶向下(存在栈溢出风险)
2.迭代,自底向上
3.尾递归(java并没有对尾递归进行优化,在此不考虑)
代码:
使用了迭代和递归两种方法,递归多次重复运算,效率低,使用迭代更好。
递归时间复杂度:O(n²);空间复杂度为O(1)
迭代时间复杂度:O(n);空间复杂度O(1).