
论文随笔
文章平均质量分 76
HMTT
有任何问题,可以使用QQ824626339联系本人,博客私信不常看
展开
-
CIDEr(Consensus-based Image Description Evaluation)的计算
CIDEr的计算原创 2024-07-04 15:54:23 · 1372 阅读 · 0 评论 -
Automated clinical coding using off-the-shelf large language models
给住院病人分配icd诊断编码通常是专业的人类编码专家的工作。在人工智能领域,主要的方向是通过有监督深度学习模型来进行自动icd编码。然而,学习如何预测大量的罕见编码仍然是临床实践中存在的困难。因此本文尝试利用现成的大语言模型来尝试开发一个零样本和少样本的编码对齐方案,尝试避开特定任务的训练过程。由于无监督的预训练并不能保证对于ICD本体和临床编码任务的准确性,因此本文将任务视为信息抽取。让大语言模型根据提供的编码概念来进行相关提及的抽取。原创 2024-01-21 20:30:49 · 755 阅读 · 0 评论 -
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
本文提出了思维图Graph of Thoughts (GoT),是一个用于提升大语言模型提示能力的框架。与之前工作思维链(CoT)、思维树(ToT)类似,但思维图有将大语言模型产生的信息建模为图结构的能力。提出了一种新的方法来增强大语言模型通过网络进行推理的能力。设计了用于实现GoT的模块化框架。展示了几个GoT的使用案例(排序、摘要关键词计数、集合操作、文档合并),并详细说明如何使用基于图的范式来实现它们。评估GoT并展示其相对于现有技术的优势。原创 2024-01-18 15:52:17 · 914 阅读 · 0 评论 -
Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding
过去的工作通常使用标签注意力来匹配相关的文本片段。本文认为编码的同义词能提供更加丰富的信息,因为电子病历中的表达方式通常与ICD编码的描述不一致。因此作者将ICD编码与UMLS中的概念进行了对齐,并收集了一些同义词。文中样例:编码244.9的icd描述为“Unspecified hypothyroidism “,但在电子病历中通常与”low t4“和“subthyroidism”相关。原创 2024-01-11 14:48:01 · 551 阅读 · 0 评论 -
LARGE LANGUAGE MODELS ARE HUMAN-LEVEL PROMPT ENGINEERS
在大模型时代,提示的作用非常巨大,一个好的提示可以在任务中表现出极好的性能。但通常来说最有效的提示是由人手工制作的,需要耗费大量的人工开销。因此本文就尝试让大语言模型自动生提示本并优化提示。原创 2023-12-18 16:01:47 · 1606 阅读 · 0 评论 -
CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information
本文的任务是开放性知识图谱标准化,旨在将开放信息抽取中的实体和关系进行标准化,将相同意义但不同描述的实体和关系归为一类。本文指出,过去的方法需要手动定义特征,并以此进行聚类。这些方法往往非常昂贵且通常只能得到次优结果。因此作者提出了一个新的框架,通过训练嵌入的方式来进行特征提取。原创 2023-12-18 10:14:39 · 917 阅读 · 0 评论 -
Can LLM-Generated Misinformation Be Detected?
本文讨论**“大语言模型生成的错误是否能被检测出来?”**这个问题,并做了一系列研究实验。大语言模型的出现对自然语言处理领域造成变革性的影响。然而,像ChatGPT这样的大语言模型有可能被用来制造错误信息,这对网络安全和公众信任构成了严重威胁。大语言模型制造的错误信息会比人类构造的错误信息产生更大的危害吗?如何利用大语言模型生成错误信息?人类是否能检测大语言模型生成的错误信息?侦测器是否能检测大语言模型生成的错误信息?原创 2023-12-11 16:12:23 · 1169 阅读 · 0 评论 -
Low-resource Personal Attribute Prediction from Conversations
本文研究的任务是个人属性预测,旨在通过用户的对话内容,从中推断出用户的一些隐含属性,如职业或爱好。文中为了解决上述问题,提出了PEARL,可以在资源受限的情况下,仅通过未标记的对话数据来预测个人属性。通过一个迭代的基于双词语义的Gibbs抽样过程,AKI模块建立了属性值与主题之间的关联,并优化了双词-属性值相似性分数的计算。PEARL可以在不依赖于标记的语料或外部数据的情况下表现良好,使得它能够低资源情况的也能保持良好的效果,这在实际应用中很常见,因为标记数据往往难以获取。原创 2023-12-08 10:11:48 · 417 阅读 · 0 评论 -
Iterative Entity Alignment via Knowledge Embeddings
本文的任务是实体对齐,目的是将两个知识图谱的实体和关系进行对齐(假设范围相同)。之前的方法往往依赖于实体的外部知识库,比如维基百科,因此需要花费大量的资源来手动构造特征以完成对齐。本文提出了一个基于联合知识嵌入的方法。根据少量的已对齐实体,将不同知识图谱的实体和关系编码到同一个低纬度语义空间。原创 2023-12-07 11:02:34 · 458 阅读 · 0 评论