用EOF分解16年东海月平均海表面温度

该博客记录了利用2001 - 2016年东海月平均海表面温度数据进行经验正交函数(EOF)分解的作业。介绍了EOF分解方法的原理及步骤,包括分析原理和计算步骤,还给出了程序实现代码及相关结果图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作业记录
题目:利用16年东海或南海月平均海表面温度,对该海区的海温资料进行经验正交函数分解

解答:
一、EOF(经验正交函数)分解方法的原理及分解步骤
1.EOF分析原理
气象要素场的经验正交函数分解,是将X 分解为空间函数V 和时间函数Z 两部分,即:
X = VZ
将某一气候要素场的观测资料以矩阵形式给出
在这里插入图片描述
其中m 是空间点(网格点),n 是时间点或样本数。则V可以写成
在这里插入图片描述
vi(i=1, 2…m) 表示第i 个典型场,它仅仅是空间的函数。Z 可以写成
在这里插入图片描述
Z的第i行,即为第i 个典型场所对应的时间权重系数,表征典型场随时间的演变特征。
我们将X = VZ两边同乘他们的逆矩阵,可以得到
在这里插入图片描述
令A=XXT,Λ=ZZT,则上式可以表示为
在这里插入图片描述
由主成分分析可知,其中V 的列就是矩阵A的特征向量,Λ 是A 的特征值组成的对角矩阵。
当V 求出来以后,利用下式,求出Z
在这里插入图片描述
分解工作到此完成。

2.EOF分解计算步骤
(1)根据分析目的,确定X的具体形态(原始、距平或标准化);
(2)由X求矩阵A=XX^T;
(3)求A的全部特征值λ_h,特征向量V_h,h是非零特征值的个数;
(4)将特征值作非升序排列,并对特征向量序数作相应变动;
(5)由X及主要的V_p,求其时间序数Z_n,主要的个数(典型场)由分析目的及分析对象决定;
(6)计算每个特征向量的方差贡献,以及前P个特征向量的累积方差贡献;
(7)显著性检验;
(8)输出计算结果。

二、程序实现
利用2001年~2016年16年的东海月平均海表面温度数据,对其进行EOF分析。

  1. 代码如下:
close all;clc; clear;
%--------读取数据与数据区域的选择-------%
ncdisp('D:\studentYJ\数据处理与分析\编程作业\EOF分析\monthmeansst3.nc')
ncfile='D:\studentYJ\数据处理与分析\编程作业\EOF分析\monthmeansst3.nc';
lon=ncread(ncfile,'longitude');
lat=ncread(ncfile,'latitude');
time=ncread(ncfile,'time');
SST=ncread(ncfile,'sst'); 
[lat,lon]=meshgrid(lat,lon);
m_proj('miller','long',[115,135],'lat',[20,35]);%选取研究地点:东海海域20-35°N,125-135°E
SST=SST-273;%由华氏温度转化为摄氏温度

m_pcolor(lon,lat,mean(SST,3));
m_grid('tickdir','out');
m_gshhs_l('patch',[0.8 0.8 0.8],'Edgecolor','none');
colorbar;
colormap(jet);
title('2001年~2016年东海月平均海表温度原始图');


%----------经验正交模态分解(EOF)----------%
X=[];
for i=1:size(SST,3)
X(:,i)=reshape(SST(:,:,i),size(SST,1)*size(SST,2),1);
end

%距平
X1=X(find(~isnan(X)));%找出数据中的非零值
X2=reshape(X1,length(X1)/size(SST,3),size(SST,3));
 Xba=mean(mean(X2));
 X3=X2-Xba;
 
%--------------EOF1---------------%
SST_A=1/size(SST,3)*(X3*X3');%实对称矩SST_A
[SST_V,namta]=eig(SST_A);%实对称矩SST_A的特征向量SST_V和特征值namta
val1=flipud(diag(namta));
vec1=SST_V(:,size(SST_V,1));
EOF1=vec1;%最大特征值对应特征向量即为第一EOF模态(空间函数)
EOF1=EOF1*sqrt(val1(1,1));
PC1=vec1'*X3;%%%时间函数
PC1=PC1/sqrt(val1(1,1));
perc1=namta(size(SST_V,1),size(SST_V,1))/sum(diag(namta));%%计算方差贡献率
figure;
plot(PC1);
title(['(a) EOF1=' num2str(perc1*100) '%']);
% d=diag(namta);%取出特征值矩阵列向量(提取出每一主成分的贡献率)
% namta_des=sort(d,'descend'); %将特征值矩阵列向量按照贡献率的大小descend降序排列
% v=fliplr(SST_V);       %将特征向量L按照特征值大小从上向下排列
% SST_V1=v(:,size(v,1));
% SST_Z=SST_V'*SST; %时间函数

%--------------EOF1海表温度重构---------------%
XP1=vec1*PC1;
XEOF=zeros(size(SST,1)*size(SST,2),size(SST,3));
[x,y]=find(isnan(X));%找出数据中的NAN值
for k=1:length(x)
XEOF(x(k),y(k))=nan;
end
reshape(XP1,size(XP1,1)*size(XP1,2),1);
[x1,y1]=find(~isnan(X));
for i=1:length(x1)
    XEOF(x1(i),y1(i))=XP1(i);
end
Xeof1=reshape(XEOF,size(SST,1),size(SST,2),size(SST,3));

figure
m_proj('miller','long',[115,135],'lat',[20,35]);
m_pcolor(lon,lat,mean(Xeof1,3));
m_grid('tickdir','out');
m_gshhs_l('patch',[0.8 0.8 0.8],'Edgecolor','none');
colorbar;
caxis([-0.05,0.02]);
colormap(jet);
title('2001年~2016年平均海表温度EOF1图');


%--------------EOF2---------------%
vec2=SST_V(:,size(SST_V,1)-1);
EOF2=vec2;%最大特征值对应特征向量即为第一EOF模态(空间函数)
EOF2=EOF2*sqrt(namta(size(SST_V,1),size(SST_V,1)));
PC2=vec2'*X3;%时间函数
PC2=PC2/sqrt(namta(size(SST_V,1),size(SST_V,1)));
perc2=namta(size(SST_V,1)-1,size(SST_V,1)-1)/sum(diag(namta));%计算方差贡献率
figure;
plot(PC2);
title(['(b) EOF2=' num2str(perc2*100) '%']);

%--------------EOF2海表温度重构---------------%
XP2=vec2*PC2;
XEOF=zeros(size(SST,1)*size(SST,2),size(SST,3));
[x,y]=find(isnan(X));
for k=1:length(x)
XEOF(x(k),y(k))=nan;
end
reshape(XP2,size(XP2,1)*size(XP2,2),1);
[x1,y1]=find(~isnan(X));
for i=1:length(x1)
    XEOF(x1(i),y1(i))=XP2(i);
end
Xeof2=reshape(XEOF,size(SST,1),size(SST,2),size(SST,3));

figure
m_proj('miller','long',[115,135],'lat',[20,35]);
m_pcolor(lon,lat,mean(Xeof2,3));
m_grid('tickdir','out');
m_gshhs_l('patch',[0.8 0.8 0.8],'Edgecolor','none');
colorbar
caxis([-0.05,0.02]);
colormap(jet);
title('2001年~2016年平均海表温度EOF2图');

  1. 结果如下:
    (1)第一模态和第二模态方差贡献率图像如下:
    在这里插入图片描述
    在这里插入图片描述
    (2)2001年至2016年月平均海表温度原始图像及其EOF1、EOF2图像如下:
    在这里插入图片描述
    在这里插入图片描述
    感谢写作业过程中帮助过我的同学们,老感谢了,真的!
    没有你们,我的作业就凉凉了,我真菜。Over~
<think>好的,我现在需要回答用户关于EOF分解在站点数据分析中的应用、方法和实现的问题。首先,我得回忆一下EOF分解的基本概念和步骤。根据用户提供的引用内容,EOF分解主要用于气象学和洋学中的时空数据分析,能够处理高维数据并提取主要变化模式。用户提到了站点数据,比如福建省28个气象站的降水数据,所以需要结合站点数据的结构来解释。 首先,我应该解释EOF分解在站点数据分析中的具体应用场景,比如分析降水量的时空变化模式。然后分步骤说明方法,包括数据预处理、分解过程、模态选择等。接着要提到实现方法,可能涉及Python或Matlab,引用中提到了Eof库和Matlab的实现,需要结合这些工具具体说明。 需要注意用户提到的数据格式,站点数据通常以站点为行,时间为列,所以在数据准备时要强调这一点。另外,用户引用中的代码示例使用了Eof分解器,可能需要说明如何加载数据、创建分解器、提取EOF模态和主成分,以及方差贡献的计算。同时,还要提到结果解释,比如通过前几个模态解释大部分方差,以及如何可视化结果。 可能还需要考虑EOF分解的优势,比如不需要特定的统计假设,处理高维数据的能力,这对站点数据分析尤其重要,因为站点数量多,时间序列长。此外,要提醒注意事项,比如数据去趋势、标准化处理,以及模态的物理意义解释需要结合领域知识。 最后,生成相关问题时要围绕应用场景、步骤、工具实现、结果解读和优缺点展开,确保问题覆盖用户可能感兴趣的方面。</think>EOF分解在站点数据分析中的应用主要通过时空数据降维和模式识别实现,特别适用于气象站点观测数据的时空特征提取。以下是具体方法和实现步骤: ### 一、应用场景 1. **降水时空分布分析**:识别福建省28个站点降水量的主要变化模态,例如$EOF1$可能反映全区一致性变化,$EOF2$可能呈现南北反相位分布[^3] 2. **温度异常诊断**:分析站点温度数据的空间相关结构和时间演变特征 3. **极端事件研究**:通过主成分时间序列检测异常份 ### 二、实现方法 1. **数据预处理** - 构建$m \times n$数据矩阵:$m$个站点(行),$n$个时间点(列) - 去趋势处理:$$X'(t) = X(t) - \frac{1}{n}\sum_{t=1}^{n}X(t)$$ - 标准化:消除量纲影响,尤其适用于多变量联合分析 2. **EOF分解核心步骤 ```python from eofs.standard import Eof import numpy as np # 加载站点数据(示例为28站点×54) data = np.loadtxt('fujian_precip.txt') # 行为站点,列为份 # 创建EOF分解器 solver = Eof(data) # 引用[2]的实现方法 # 获取前4个空间模态(作为相关场) eofs = solver.eofsAsCorrelation(neofs=4) # 获取主成分时间序列 pcs = solver.pcs(npcs=4, pcscaling=1) # 计算方差贡献率 variance = solver.varianceFraction(neigs=4) ``` 3. **结果解释** - 通过Scree检验确定有效模态:通常保留累计方差>85%的前$k$个模态 - 空间模态图:展示各站点在EOF模式中的权重分布 - 时间系数图:反映该模态随时间的变化特征 ### 三、技术优势 1. **数据处理能力**:可处理$m>n$的高维数据(如全国2419个气象站点数据) 2. **物理意义明确**:第一模态通常表征最大协方差方向的空间分布 3. **可视化友好**:支持绘制空间模态等值线图和PC序列演变图 ### 四、注意事项 1. 数据缺失需预先插补(如Kriging插值) 2. 模态旋转可能增强物理解释性 3. 需结合蒙特卡洛检验判断模态显著性[^1]
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值