代码随想录算法训练营第十四天|LeetCode144.二叉树的前序遍历、LeetCode94.二叉树的中序遍历、LeetCode145.二叉树的后序遍历

代码随想录算法训练营第十四天|LeetCode144.二叉树的前序遍历、LeetCode94.二叉树的中序遍历、LeetCode145.二叉树的后序遍历

2023年3月7日 第二十二天补

二叉树专题的第一天,这一天其实做了三题,分别是树的先序、中序、后序遍历

其中每道题我都跟着carl哥用三种方式解决:递归法、递归法、统一格式法

接下来三题每题我写三种解法

144. 二叉树的前序遍历

题目链接:144. 二叉树的前序遍历

递归法

思路:

  • 写一个递归函数,参数传入递归的节点和记录元素的数组
  • 注意在递归调用函数的顺序!
  • 前序遍历:先插入当前元素的值,再遍历左孩子,再遍历右孩子
  • 中序遍历:先遍历左孩子,再插入当前元素的值,再遍历右孩子
  • 后序遍历:先遍历左孩子,再遍历右孩子,再插入当前元素的值

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> preorderTraversal(TreeNode *root)
    {
        vector<int> res;
        travelTree(root,res);
        return res;
    }

    void travelTree(TreeNode *node, vector<int> &v)
    {
        if (node == nullptr)
            return;
        v.push_back(node->val);
        travelTree(node->left, v);
        travelTree(node->right, v);
    }
};

迭代法

思路: 手动用一个栈来实现递归的逻辑

时间复杂度:O(n),空间复杂度O(n)

代码:


class Solution
{
public:
    vector<int> preorderTraversal(TreeNode *root)
    {
        vector<int> res;
        stack<TreeNode *> stk;
        stk.push(root);
        while (!stk.empty())
        {
            TreeNode *node = stk.top();
            stk.pop();
            if (node != nullptr)
            {
                res.push_back(node->val);
                // 注意入栈顺序,后入栈的元素先放进数组,所以要先遍历右孩子,再遍历左孩子
                stk.push(node->right);
                stk.push(node->left);
            }
            else
                continue;
        }
        return res;
    }
};

统一格式法

思路:

  • 对遍历过的中间节点,设置一个后缀进行标记

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> preorderTraversal(TreeNode *root)
    {
        vector<int> res;
        stack<TreeNode *> stk;
        if (root != nullptr)stk.push(root);
        while (!stk.empty())
        {
            auto cur = stk.top();
            if (cur != nullptr)
            {
                // 统一格式其实只需要改这里,由于存储入栈结构,存的顺序要反过来,前序遍历应是右左中
                stk.pop();
                if (cur->right != nullptr)stk.push(cur->right);
                if (cur->left != nullptr)stk.push(cur->left);
                stk.push(cur);
                // 在中间节点后放放置空指针标记
                stk.push(nullptr);
            }
            else
            {
                // 遇到是空指针了,就代表当前元素其实是遍历过的,需要插入数组
                stk.pop();
                cur = stk.top();
                res.push_back(cur->val);
                stk.pop();
            }
        }
        return res;
    }
};

总结:

  • 加油哈
  • 做题体验:哈哈哈哈 > 嘿嘿 > 哎哎 > 嘤嘤
  • 时间:未计
  • 一刷

94. 二叉树的中序遍历

题目链接:94. 二叉树的中序遍历

递归法

思路: 见上

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> inorderTraversal(TreeNode *root)
    {
        vector<int> res;
        travelNode(root, res);
        return res;
    }

    void travelNode(TreeNode *node, vector<int> &vct)
    {
        if (node == nullptr)
            return;
        travelNode(node->left, vct);
        vct.push_back(node->val);
        travelNode(node->right, vct);
    }
};

迭代法

思路:

  • 由于深度优先的遍历顺序,无法满足先遍历左孩子再便利父亲节点,又没有反转顺序的方式,所以中序遍历的迭代法要复杂一些
  • 这里的代码是我自己想到的方式,不是太好,会破坏树的原本结构

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> inorderTraversal(TreeNode *root)
    {
        vector<int> res;
        stack<TreeNode *> stk;
        if (root != nullptr)
            stk.push(root);
        while (!stk.empty())
        {
            TreeNode *node = stk.top();
            if (node->left != nullptr)
            {
                stk.push(node->left);
                // 左指针制空,这样回退的时候知道这个节点遍历过
                node->left = nullptr;
            }
            else
            {
                // 当前节点没有左孩子,可以输出当前节点
                stk.pop();
                res.push_back(node->val);
                if (node->right != nullptr)
                {
                    // 插入右孩子
                    stk.push(node->right);
                    // 右指针制空
                    node->right = nullptr;
                }
            }
        }
        return res;
    }
};

统一格式法

思路:

  • 同上

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> inorderTraversal(TreeNode *root)
    {
        vector<int> res;
        stack<TreeNode *> stk;
        if(root!=nullptr)stk.push(root);
        while (!stk.empty())
        {
            auto cur = stk.top();
            if(cur !=nullptr)
            {   
                stk.pop();
                if(cur->right!=nullptr)stk.push(cur->right);
                stk.push(cur);
                stk.push(nullptr);
                if(cur->left!=nullptr)stk.push(cur->left);
            }
            else
            {
                stk.pop();
                cur = stk.top();
                res.push_back(cur->val);
                stk.pop();
            }
        }
        return res;
    }
};

总结:

  • 加油哈
  • 做题体验:哈哈哈哈 > 嘿嘿 > 哎哎 > 嘤嘤
  • 时间:未计
  • 一刷

145. 二叉树的后序遍历

题目链接:145. 二叉树的后序遍历

递归法

思路: 见上

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> postorderTraversal(TreeNode *root)
    {
        vector<int> res;
        travelTree(root, res);
        return res;
    }

    void travelTree(TreeNode *node, vector<int> &res)
    {
        if (node == nullptr)
            return;
        travelTree(node->left, res);
        travelTree(node->right, res);
        res.push_back(node->val);
    }
};


迭代法

思路:

  • 因为深度遍历遇到节点的顺序,中间节点必然是先遇到,所以用迭代法会有局限性,无法在遍历完孩子节点之后遍历父亲节点
  • 这道题要另想一个思路,前序遍历的顺序是中左右,后序遍历的顺序是左右中
  • 那么如果改变孩子节点的遍历顺序,将前序遍历改成中右左,那么再反转数组,就可以得到后序遍历的序列化

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> postorderTraversal(TreeNode *root)
    {
        vector<int> res;
        travelTree(root, res);
        return res;
    }

    void travelTree(TreeNode *node, vector<int> &res)
    {
        if (node == nullptr)
            return;
        travelTree(node->left, res);
        travelTree(node->right, res);
        res.push_back(node->val);
    }
};

统一格式法

思路:

  • 同上

时间复杂度:O(n),空间复杂度O(n)

代码:

class Solution
{
public:
    vector<int> postorderTraversal(TreeNode *root)
    {
        vector<int> res;
        stack<TreeNode *> stk;
        if(root!=nullptr)stk.push(root);
        while (!stk.empty())
        {
            auto cur = stk.top();
            if(cur !=nullptr)
            {   

                // 后序遍历:左右中
                // 入栈顺序:中右左
                stk.pop();
                stk.push(cur);
                stk.push(nullptr);
                if(cur->right!=nullptr)stk.push(cur->right);
                if(cur->left!=nullptr)stk.push(cur->left);
            }
            else
            {
                stk.pop();
                cur = stk.top();
                res.push_back(cur->val);
                stk.pop();
            }
        }
        return res;
    }
};

总结:

  • 加油哈
  • 做题体验:哈哈哈哈 > 嘿嘿 > 哎哎 > 嘤嘤
  • 时间:未计
  • 一刷
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值