代码生成是大语言模型在开发场景中最受欢迎的功能之一。然而,如何“对话式”地让模型编写出风格统一、逻辑清晰、符合业务需求的代码,却是一门艺术。
本章将深入探讨如何撰写高效的代码生成提示词,涵盖从函数编写到风格控制、从复杂度调节到业务语义对齐的各类实战技巧。
文章目录
一、让模型编写函数的最佳实践
大语言模型生成代码的基本单元通常是函数。一个优秀的代码生成提示,通常具备以下要素:
- 明确的功能描述
- 清晰的输入输出格式
- 必要的约束条件
- 可选的示例调用(可选但强大)
示例 1:简单的函数请求
Prompt:
编写一个Python函数,输入一个整数n,返回前n个斐波那契数。
生成代码:
def fibonacci(n):
seq = [0, 1]
while len(seq) < n:
seq.append(seq[-1] + seq[-2])
return seq[:n]
提升版本(加入参数说明和示例)
Prompt:
请用Python编写一个函数,返回前n个斐波那契数。函数要求如下:
- 输入参数:整数n,代表需要返回的斐波那契数个数
- 返回值:包含n个整数的列表
- 函数应处理 n = 0 的情况
示例:
输入:n = 5
输出:[0, 1, 1, 2, 3]
小贴士
🧠 提示要点:明确“输入→处理→输出”三要素,并尽量使用项目中常见的格式和术语。
二、控制风格、语言与复杂度
模型可以根据提示词调整代码的风格、使用的语言,甚至是代码的复杂度。
示例 2:指定风格(函数式 vs 面向对象)
Prompt:
使用函数式编程风格编写一个Python函数,将列表中的每个数字平方。
def square_list(lst):
return list(map(lambda x: x**2, lst))
Prompt(面向对象版):
使用面向对象风格实现相同功能。定义一个类 `SquareTransformer`,包含方法 `transform(self, lst)`。
class SquareTransformer:
def transform(self, lst):
return [x**2 for x in lst]
示例 3:指定语言
用JavaScript编写一个函数,判断一个字符串是否是回文。
function isPalindrome(str) {
const cleaned = str.toLowerCase().replace(/[^a-z0-9]/g, '');
return cleaned === cleaned.split('').reverse().join('');
}
三、对齐业务语义与性能要求的小技巧
有时候,生成的代码逻辑正确但不符合业务背景或性能预期。你可以通过这些技巧来“校准”模型:
技巧1:加入**“在电商网站场景下”**等业务前缀
在电商网站场景下,编写一个Python函数,根据商品销量排序推荐列表。
技巧2:提出具体的性能约束
编写一个高性能版本的字符串去重函数,适用于百万级数据处理。
技巧3:添加错误处理或边界条件
请确保函数能处理空列表、负数或无效输入的情况。
✍️ 练习区:动手试试看!
-
函数生成练习
请提示模型编写一个函数:输入一个英文句子,返回所有单词的长度列表。 -
风格控制练习
尝试分别用函数式和面向对象方式,提示模型实现一个“去除重复列表项”的功能。 -
复杂度调节练习
写两个Prompt,一个生成“暴力法”解决“寻找数组中两个数之和等于目标值”的问题,一个生成“高效法”(使用哈希表)。
📌 本章小结
- 代码生成不是“让模型写代码”这么简单,而是“用精确的提示控制模型的输出”。
- 明确的功能描述、风格约束和语义上下文是高质量代码生成的关键。
- 提供示例、边界条件和性能提示,有助于获得更稳定和可靠的输出。
👉 下一章我们将进入**“单元测试与调试辅助”**,看看模型在开发过程中的“第二大超能力”。