一、题目
二、思路
我们假设有n个数,(0,1)总和为k,(2,3)总和n-k, k在[2, n-2]的范围内。由条件知道第一位一定不是0或者1,所以有Ckn-1种,而排列的顺序一定是0000…1111(剔除了2,3以后)。那么最终结果就是Ckn-1 * (k-1)* (n-k-1),其中(k-1是0的个数取法,n - k - 1是2的个数取法),再将k从1到n-2求和即可。这里运用了组合数的模版代码。
三、acwing上的代码
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1010, MOD = 1e9 + 7;
int n;
int C[N][N];
int main () {
cin >> n;
for ( int i = 0; i <= n; i++ ) {
for ( int j = 0; j <= i; j++ ) {
if (!j) C[i][j] = 1;
else C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
}
}
int res = 0;
for ( int k = 2; k <= n - 2; k++ )
res = ( res + (LL)C[n-1][k] * (k - 1) * (n - k - 1)) % MOD;
cout << res;
return 0;
}
四、组合数的模版
for ( int i = 0; i <= n; i++ ) {
for ( int j = 0; j <= i; j++ ) {
if (!j) C[i][j] = 1;
else C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
}
}