文献
文章平均质量分 53
风的语言_
算法逻辑黑洞领头人
展开
-
文献整理-Job-Shop调度问题的两级元启发式算法
元启发式算法元启发式算法(MetaHeuristic Algorigthm)是启发式算法的改进,它是随机算法与局部搜索算法相结合的产物。元启发式算法能够在一定程度上在全局进行搜索,找到最优解的近似解。元启发式算法的核心是Exploration和Exploitation。其中,Exploration即尽量探索整个搜索空间,由于最优解可能存在在整个搜索空间的任何位置。而Exploitation即尽可能的利用到有效的信息,在大部分的情况下优解之间往往存在着一定的相关性,利用这些相关性来逐步调整,从初解慢慢搜索原创 2021-07-22 17:17:01 · 683 阅读 · 0 评论 -
2021-07-15CPMP-DNN
container pre-marshalling problem (CPMP)问题描述:包括一组排列成s个堆的c个容器,堆的最大高度为t。参数Gij提供了堆 i 中容器在tier(高度) j 处的组值(检索时间)。CPMP的目标是找到一个最小长度的堆到堆移动序列( i,i’ ),其中容器从堆 i 的顶部移动到堆 i’ 的顶部,从而对所有堆进行排序,即Gij≥ Gi,j+1,∀ 1 ≤ i ≤ S,1 ≤ j < T。CPMP问题实例及其最优解。从左边开始,有三个堆栈,总共有六个容器,每个原创 2021-07-15 20:29:28 · 375 阅读 · 0 评论 -
求解作业车间调度问题的Actor-Critic深度强化学习文献翻译
Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems求解作业车间调度问题的Actor-Critic深度强化学习Actor-Critic算法:强化学习中的一种结合体 Actor Critic (演员评判家), 它合并了 以值为基础 (比如 Q learning) 和 以动作概率为基础 (比如 Policy Gradients) 两类强化学习算法.强化学习中有一个方向是直接基于策略(policy)原创 2021-07-14 16:33:08 · 983 阅读 · 0 评论 -
柔性作业车间调度FJSP的描述和分类
柔性作业车间调度问题一、问题描述(flexiblejobshopschedulingproblem,FJSP)的描述如下:n个工件(J1,J2,…,Jn)要在m台机器(M1,M2,…,Mm)上加工;每个工件包含一道或多道工序;工序顺序是预先确定的;每道工序可以在多台不同加工机器上进行加工;工序的加工时间随加工机器的不同而不同;调度目标是为每道工序选择最合适的机器,确定每台机器上各道工序的最佳加工顺序及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机原创 2021-07-07 20:42:16 · 2176 阅读 · 0 评论 -
粒子群(PSO)算法学习
粒子群优化算法(Particle Swarm Optimization),缩写为 PSO,属于进化算法的一种。和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解。 它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。一、概念:粒子群是基于群体的算法,每个个体称为粒子,粒子组成粒子群,群体在可行区域中逐步移动。每次移动过程中,算法计算每个粒子的目标函数,根据该值原创 2021-07-07 15:19:44 · 9735 阅读 · 1 评论 -
2021-06-15
基于深度强化学习与迭代贪婪的流水车间调度优化以最小化最大完工时间为目标, 提出求解流水车间调度设计一种新的编码网络对问题进行建模利用强化学习训练模型以获取优良输出结果提出一种带反馈机制的迭代贪婪算法, 以网络的输出结果为初始解, 协同利用多种局部操作提高搜索能力, 并根据性能反馈来调节各操作的使用, 进而获得最终的调度解。将深度学习与强化学习结合形成深度强化学习(Deepreinforcementlearning, DRL), 可自主挖掘问题的特征, 积累问题信息并进行决策优化, 有助于设计面向特原创 2021-06-15 21:30:42 · 189 阅读 · 1 评论 -
论文文献_1
基于自适应多目标变邻域搜索的节能无等待置换流水车间调度摘要问题类型:节能无等待排列流水车间调度问题解决:同时考虑最大完工时间和总能耗机器处理速度与能量消耗有关,速度与能量成正相关,速度与处理时间呈负相关提出了一种自适应多目标变邻域搜索(AM-VNS)算法。设计了两个基本的速度调整启发式,可以在不降低给定解决方案的能量消耗的情况下降低其最大完工时间。两种广泛使用的邻域生成操作,即插入和交换,被适应并集成到变邻域下降阶段。根据执行顺序,可以设计两种变邻域下降结构。我们采用一种自适应机制来动态地决定选原创 2021-06-09 11:32:01 · 93 阅读 · 0 评论