101.对称二叉树
给定一个二叉树,检查它是否是镜像对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3
说明:
如果你可以运用递归和迭代两种方法解决这个问题,会很加分。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
return !root || dfs(root->left, root->right);
}
bool dfs(TreeNode *p, TreeNode *q)
{
if(!p || !q) return !p && !q;
return p->val == q->val && dfs(p->left, q->right) && dfs(p->right, q->left);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if(!root) return true;
stack<TreeNode*> left, right;
TreeNode *lc = root->left;
TreeNode *rc = root->right;
while(lc || rc || left.size())
{
while(lc && rc)
{
left.push(lc), right.push(rc);
lc = lc->left, rc = rc->right;
}
if(lc || rc) return false;
lc = left.top(), rc = right.top();
left.pop(), right.pop();
if(lc->val != rc->val) return false;
lc = lc->right, rc = rc->left;
}
return true;
}
};
104.二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
return root ? max(maxDepth(root->left), maxDepth(root->right)) + 1 : 0;
}
};
145.二叉树的后序遍历
给定一个二叉树,返回它的 后序 遍历。
示例:
输入: [1,null,2,3]
1
\
2
/
3
输出: [3,2,1]
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> res;
vector<int> postorderTraversal(TreeNode* root) {
if(!root) return res;
postorderTraversal(root->left);
postorderTraversal(root->right);
res.push_back(root->val);
return res;
}
};
后序:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> res;
vector<int> postorderTraversal(TreeNode* root) {
TreeNode *p = root, *r = NULL;
stack<TreeNode*> s;
while(!s.empty() || p != NULL)
{
if(p != NULL)
{
s.push(p);
p = p->left;
}
else
{
p = s.top();
if(p->right == NULL || p->right == r)
{
res.push_back(p->val);
r = p;
s.pop();
p = NULL;
}
else p = p->right;
}
}
return res;
}
};
前序:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> res;
vector<int> postorderTraversal(TreeNode* root) {
TreeNode *p = root;
stack<TreeNode*>s;
while(!s.empty() || p)
{
if(p)
{
res.push_back(p->val);
s.push(p);
p = p->left;
}
else
{
p = s.top();
s.pop();
p = p->right;
}
}
return res;
}
};
中序:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> res;
vector<int> postorderTraversal(TreeNode* root) {
TreeNode *p = root;
stack<TreeNode*>s;
while(!s.empty() || p)
{
if(p)
{
s.push(p);
p = p->left;
}
else
{
p = s.top();
s.pop();
res.push_back(p->val);
p = p->right;
}
}
return res;
}
};
105.从前序与中序遍历序列构造二叉树
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<int, int> pos;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n = preorder.size();
for(int i = 0; i < n; i ++)
pos[inorder[i]] = i;
return dfs(preorder, inorder, 0, n - 1, 0, n - 1);
}
TreeNode *dfs(vector<int>&pre, vector<int>&in, int pl, int pr, int il, int ir)
{
if(pl > pr) return NULL;
int k = pos[pre[pl]] - il; //根节点在中序遍历的位置
TreeNode *root = new TreeNode(pre[pl]);
root->left = dfs(pre, in, pl + 1, pl + k, il, il + k - 1);
root->right = dfs(pre, in, pl + 1 + k, pr, il + 1 + k, ir);
return root;
}
};
331.验证二叉树的前序序列化
序列化二叉树的一种方法是使用前序遍历。当我们遇到一个非空节点时,我们可以记录下这个节点的值。如果它是一个空节点,我们可以使用一个标记值记录,例如 #。
_9_
/ \
3 2
/ \ / \
4 1 # 6
/ \ / \ / \
# # # # # #
例如,上面的二叉树可以被序列化为字符串 “9,3,4,#,#,1,#,#,2,#,6,#,#”,其中 # 代表一个空节点。
给定一串以逗号分隔的序列,验证它是否是正确的二叉树的前序序列化。编写一个在不重构树的条件下的可行算法。
每个以逗号分隔的字符或为一个整数或为一个表示 null 指针的 ‘#’ 。
你可以认为输入格式总是有效的,例如它永远不会包含两个连续的逗号,比如 “1,3” 。
示例 1:
输入: “9,3,4,#,#,1,#,#,2,#,6,#,#”
输出: true
示例 2:
输入: “1,#”
输出: false
示例 3:
输入: “9,#,#,1”
输出: false
class Solution {
public:
bool ans = true;
bool isValidSerialization(string preorder) {
preorder += ',';
int u = 0;
dfs(preorder, u);
return ans && u == preorder.size();
}
void dfs(string &pre, int &u)
{
if(u == pre.size())
{
ans = false;
return;
}
if(pre[u] == '#')
{
u += 2;
return;
}
while(pre[u] != ',') u ++;
u ++;
dfs(pre, u);
dfs(pre, u);
}
};
102.二叉树的层序遍历
给定一个二叉树,返回其按层次遍历的节点值。 (即逐层地,从左到右访问所有节点)。
例如:
给定二叉树: [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[9,20],
[15,7]
]
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> get_val(vector<TreeNode*> level)
{
vector<int> res;
for(auto &u : level)
res.push_back(u->val);
return res;
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
if(!root) return res;
vector<TreeNode*> level;
level.push_back(root);
res.push_back(get_val(level));
while(1)
{
vector<TreeNode*>newlevel;
for(auto &u : level)
{
if(u->left) newlevel.push_back(u->left);
if(u->right) newlevel.push_back(u->right);
}
if(newlevel.size())
{
res.push_back(get_val(newlevel));
level = newlevel;
}
else break;
}
return res;
}
};
635.两数之和IV - 输入 BST
给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true。
案例 1:
输入:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
输出: True
案例 2:
输入:
5
/ \
3 6
/ \ \
2 4 7
Target = 28
输出: False
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorder;
bool findTarget(TreeNode* root, int k) {
dfs(root);
for(int i = 0, j = inorder.size() - 1; i < j; i ++)
{
while(i < j && inorder[i] + inorder[j] > k) j --;
if(i < j && inorder[i] + inorder[j] == k) return true;
}
return false;
}
void dfs(TreeNode *root)
{
if(!root) return;
dfs(root->left);
inorder.push_back(root->val);
dfs(root->right);
}
};
236.二叉树的最近公共祖先
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root || root == p || root == q) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left && right) return root;
else if(left && !right) return left;
else if(!left && right) return right;
else return NULL;
}
};
543.二叉树的直径
给定一棵二叉树,你需要计算它的直径长度。一棵二叉树的直径长度是任意两个结点路径长度中的最大值。这条路径可能穿过根结点。
示例 :
给定二叉树
1
/ \
2 3
/ \
4 5
返回 3, 它的长度是路径 [4,2,1,3] 或者 [5,2,1,3]。
注意:两结点之间的路径长度是以它们之间边的数目表示。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int ans = 0;
int diameterOfBinaryTree(TreeNode* root) {
dfs(root);
return ans;
}
int dfs(TreeNode *root)
{
if(!root) return 0;
int l = dfs(root->left);
int r = dfs(root->right);
ans = max(ans, l + r);
return max(l, r) + 1;
}
};
124.二叉树中的最大路径和
给定一个非空二叉树,返回其最大路径和。
本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。
示例 1:
输入: [1,2,3]
1
/ \
2 3
输出: 6
示例 2:
输入: [-10,9,20,null,null,15,7]
-10
/ \
9 20
/ \
15 7
输出: 42
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int ans = INT_MIN;
int maxPathSum(TreeNode* root) {
dfs(root);
return ans;
}
int dfs(TreeNode *root)
{
if(!root) return 0;
int l = max(0, dfs(root->left));
int r = max(0, dfs(root->right));
ans = max(ans, l + r + root->val);
return root->val + max(l, r);
}
};
87.扰乱字符串
给定一个字符串 s1,我们可以把它递归地分割成两个非空子字符串,从而将其表示为二叉树。
下图是字符串 s1 = “great” 的一种可能的表示形式。
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
在扰乱这个字符串的过程中,我们可以挑选任何一个非叶节点,然后交换它的两个子节点。
例如,如果我们挑选非叶节点 “gr” ,交换它的两个子节点,将会产生扰乱字符串 “rgeat” 。
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
我们将 "rgeat” 称作 “great” 的一个扰乱字符串。
同样地,如果我们继续交换节点 “eat” 和 “at” 的子节点,将会产生另一个新的扰乱字符串 “rgtae” 。
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
我们将 "rgtae” 称作 “great” 的一个扰乱字符串。
给出两个长度相等的字符串 s1 和 s2,判断 s2 是否是 s1 的扰乱字符串。
示例 1:
输入: s1 = “great”, s2 = “rgeat”
输出: true
示例 2:
输入: s1 = “abcde”, s2 = “caebd”
输出: false
class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1 == s2) return true;
string ss1 = s1, ss2 = s2;
sort(ss1.begin(), ss1.end()), sort(ss2.begin(), ss2.end());
if(ss1 != ss2)return false;
for(int i = 1; i < s1.size(); i ++)
{
if(isScramble(s1.substr(0, i), s2.substr(0, i))
&& isScramble(s1.substr(i), s2.substr(i)))
return true;
if(isScramble(s1.substr(0, i), s2.substr(s2.size() - i))
&& isScramble(s1.substr(i), s2.substr(0, s2.size() - i)))
return true;
}
return false;
}
};
117.填充每个节点的下一个右侧节点指针2
给定一个二叉树
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
示例:
输入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":null,"next":null,"right":{"$id":"6","left":null,"next":null,"right":null,"val":7},"val":3},"val":1}
输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":null,"right":null,"val":7},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"6","left":null,"next":null,"right":{"$ref":"5"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"6"},"val":1}
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
提示:
你只能使用常量级额外空间。
使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() {}
Node(int _val, Node* _left, Node* _right, Node* _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public:
Node* connect(Node* _root) {
Node* root = _root;
while(root)
{
Node *dummy = new Node(0);
Node *tail = dummy;
while(root)
{
if(root->left)
{
tail->next = root->left;
tail = tail->next;
}
if(root->right)
{
tail->next = root->right;
tail = tail->next;
}
root = root->next;
}
tail->next = 0;
root = dummy->next;
}
return _root;
}
};
99.恢复二叉搜索树
二叉搜索树中的两个节点被错误地交换。
请在不改变其结构的情况下,恢复这棵树。
示例 1:
输入: [1,3,null,null,2]
1
/
3
\
2
输出: [3,1,null,null,2]
3
/
1
\
2
示例 2:
输入: [3,1,4,null,null,2]
3
/ \
1 4
/
2
输出: [2,1,4,null,null,3]
2
/ \
1 4
/
3
进阶:
使用 O(n) 空间复杂度的解法很容易实现。
你能想出一个只使用常数空间的解决方案吗?
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void recoverTree(TreeNode* root) {
TreeNode *first = NULL, *second = NULL, *pre = NULL;
while(root)
{
if(!root->left)
{
if(pre && pre->val > root->val)
{
if(!first) first = pre, second = root;
else second = root;
}
pre = root;
root = root->right;
}
else
{
TreeNode *p = root->left;
while(p->right && p->right != root) p = p->right;
if(!p->right)
{
p->right = root;
root = root->left;
}
else
{
p->right = NULL;
if(pre && pre->val > root->val)
{
if(!first) first = pre, second = root;
else second = root;
}
pre = root;
root = root->right;
}
}
}
swap(first->val, second->val);
}
};
337.打家劫舍3
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
示例 2:
输入: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<TreeNode*, unordered_map<int, int>>f;
int rob(TreeNode* root) {
dfs(root);
return max(f[root][0], f[root][1]);
}
void dfs(TreeNode* root)
{
if(!root) return;
dfs(root->left);
dfs(root->right);
f[root][1] = root->val + f[root->left][0] + f[root->right][0];
f[root][0] = max(f[root->left][0], f[root->left][1]) + max(f[root->right][0], f[root->right][1]);
}
};