python可视化进阶---seaborn1.7 分类数据可视化 - 统计图 barplot() / countplot() / pointplot()

这篇博客介绍了如何使用Seaborn 1.7进行分类数据的可视化,重点关注barplot()、countplot()和pointplot()函数。barplot用于绘制带有置信区间的柱状图;countplot则用于创建计数柱状图,展示数据分布;而pointplot则通过折线图形式展示数据,并结合置信区间估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类数据可视化 - 统计图

barplot() / countplot() / pointplot()

1. barplot()
#柱状图 - 置信区间估计
#置信区间:样本均值 + 抽样误差

示例1:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_context('paper')

#加载数据
titanic = sns.load_dataset('titanic')
print(titanic.head())
sns.barplot(x = 'sex', y = 'survived', hue = 'class', data = titanic,
            palette = 'hls',
            order = ['male', 'female'],  #筛选类别
            capsize = 0.05,              #误差线横向延申宽度
            saturation = 8,              #颜色饱和度
            errcolor = 'gray', errwidth = 2,  #误差线颜色、宽度
            ci = 'sd'     #置信区间误差 --> 0-100内值、 'sd' 、None
            )
#计算数据
print(titanic.groupby(['sex', 'class']).mean()['survived
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值