整除分块
stargazer.
夜を穿つの
展开
-
【BZOJ 3309】DZY Loves Math(莫比乌斯反演)
传送门 首先简单莫反后可以得到 ans=∑TaTbT∑d∣Tμ(d)f(Td)ans=\sum_{T}\frac a T\frac b T\sum_{d|T}\mu(d)f(\frac{T}{d})ans=T∑TaTbd∣T∑μ(d)f(dT) =∑TaTbTg(T)=\sum_{T}\frac a T\frac b T g(T)=T∑TaTbg(T) 考虑怎么求ggg 一个显然的...原创 2020-01-19 19:07:51 · 183 阅读 · 0 评论 -
【BZOJ2154】—Crash的数字表格(莫比乌斯反演+整除分块)
传送门 题意:求∑i=1n∑j=1mlcm(i,j),n,m≤1e7\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j),n,m\le1e7∑i=1n∑j=1mlcm(i,j),n,m≤1e7 SolutionSolutionSolution 考虑到lcmlcmlcm无法处理,我们先变成gcdgcdgcd的形式 ans=∑i=1n∑j=1mi∗jgcd(i,j)ans=\...原创 2019-02-20 21:07:57 · 211 阅读 · 0 评论 -
【BZOJ3529】【SDOI2014】—数表(莫比乌斯反演+树状数组)
传送门 题意: 令F(x)F(x)F(x)表示所有xxx的约数之和 求∑i=1n∑j=1m[F(gcd(i,j))≤a]F(gcd(i,j))%231\sum_{i=1}^{n}\sum_{j=1}^{m}[F(gcd(i,j))\le a]F(gcd(i,j))\%2^{31}i=1∑nj=1∑m[F(gcd(i,j))≤a]F(gcd(i,j))%231 Solution:Soluti...原创 2019-02-18 23:13:59 · 164 阅读 · 0 评论 -
【BZOJ2820】YY的GCD(莫比乌斯反演)
[$传送门$](https://www.lydsy.com/JudgeOnline/problem.php?id=2820) 题意:求∑i=1n∑j=1m[gcd(i,j)=prime]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=prime]i=1∑nj=1∑m[gcd(i,j)=prime] 考虑对于每一个质数ppp ansp=∑d...原创 2019-02-17 11:52:31 · 180 阅读 · 0 评论 -
【BZOJ2301】【HAOI2011】—Problem b(莫比乌斯反演)
传送门 题意:求∑i=ab∑j=cd[gcd(i,j)==d]\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==d]∑i=ab∑j=cd[gcd(i,j)==d] 其实和Zap−QueriesZap-QueriesZap−Queries一样的吧 直接看那个的做法就可以了 a,ca,ca,c容斥一下就可以了 代码 #include<bits/stdc++.h&g...原创 2019-02-16 23:34:20 · 157 阅读 · 0 评论