数据分析案例:教育数据分析

数据分析案例:教育数据分析

1. 项目背景

在教育领域,通过对学生成绩和行为数据进行分析,可以发现影响学生学习效果的关键因素,及时干预学习困难学生,优化教学资源分配。本案例以某高中学期末考试与平时表现数据为例,演示如何利用 Pandas、Matplotlib 和 Scikit-learn 构建学生成绩预测模型,并进行多维度分析,为教育管理与教学改进提供数据支持。


2. 数据加载与预处理

2.1 数据说明

假设我们有一份包含 500 名学生数据的 CSV 文件 student_performance.csv,字段包括:

  • student_id:学生编号
  • gender:性别(Male/Female)
  • age:年龄
  • study_time:每周学习时长(小时)
  • absences:缺勤次数
  • G1G2G3:第一、二、三次考试成绩(0–100)
  • failures:不及格科目次数

目标:预测学生最后一次考试成绩 G3 是否及格(≥60 分)。

2.2 读取数据

import pandas as pd

df = pd.read_csv('student_performance.csv')
print("数据预览:")
print(df.head())
print("\n数据维度:", df.shape)

2.3 缺失值与异常处理

# 缺失值检查
print(df.isnull().sum())

# 若存在缺失,可按列均值或中位数填充
df['study_time'].fillna(df['study_time'].median(), inplace=True)

# 检查异常值:年龄范围合理性
print(df['age'].describe())
df = df[df['age'].between(15, 22)]  # 保留 15–22 岁学生

3. 探索性数据分析(EDA)

3.1 性别分布

import matplotlib.pyplot as plt

df['gender'].value_counts().plot.pie(
    autopct='%1.1f%%', title='性别分布'
)
plt.ylabel('')
plt.show()
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值