Meta启发式算法综述

摘要

Meta启发式算法因其无需梯度信息、结构简单且具备全局搜索能力,在组合优化、连续优化及多目标优化等领域获得广泛应用。本综述首先回顾了过去六年(2019–2024)中涌现的150+种创新Meta启发式算法的关键特性与性能评估标准,接着按照算法范式(进化、群体智能、物理化学模拟、人类行为模拟等)进行分类与比较,并讨论了自动化算法设计与元算法框架。此外,论文还汇总了315个基准测试函数的数学与可视化描述,用以评估算法表现。最后,针对算法选择难题与未来研究趋势,提出了包括自动化配置、理论分析与高维挑战在内的若干开放性问题。 (A survey on pioneering metaheuristic algorithms between 2019 and 2024, A Review of 315 Benchmark and Test Functions for Machine Learning Optimization Algorithms and Metaheuristics with Mathematical and Visual Descriptions)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值