摘要
Meta启发式算法因其无需梯度信息、结构简单且具备全局搜索能力,在组合优化、连续优化及多目标优化等领域获得广泛应用。本综述首先回顾了过去六年(2019–2024)中涌现的150+种创新Meta启发式算法的关键特性与性能评估标准,接着按照算法范式(进化、群体智能、物理化学模拟、人类行为模拟等)进行分类与比较,并讨论了自动化算法设计与元算法框架。此外,论文还汇总了315个基准测试函数的数学与可视化描述,用以评估算法表现。最后,针对算法选择难题与未来研究趋势,提出了包括自动化配置、理论分析与高维挑战在内的若干开放性问题。 (A survey on pioneering metaheuristic algorithms between 2019 and 2024, A Review of 315 Benchmark and Test Functions for Machine Learning Optimization Algorithms and Metaheuristics with Mathematical and Visual Descriptions)