【刷题】动态规划——树形DP:皇宫看守

在这里插入图片描述题目链接

战略游戏的加强版,只要保证每个点自身被选或其相邻的点被选就可以。

由于相邻的点包括父亲和孩子,所以只考虑孩子状态不够,还要考虑父亲,因此设3个状态:

设当前结点是点 i i i,孩子结点是 s 1 , s 2 , . . . , s n s_1, s_2, ..., s_n s1,s2,...,sn,父亲结点是 p p p
1、f[i, 0] p p p有守卫,那么 i i i的孩子可以有守卫、也可以没有(状态1、2);但是 i i i没有守卫,也就是 i i i孩子的父亲没有守卫(状态0不行)。
f[i, 0] = min(f[s1, 1], f[s1, 2]) + min(f[s2, 1], f[s2, 2]) + ... + min(f[sn, 1], f[sn, 2])
2、f[i, 1] i i i有守卫,那么 i i i的孩子什么状态都行
f[i, 1] = w[i] + min(f[s1,0],f[s1,1],f[s1,2]) + min(f[s2,0],f[s2,1],f[s2,2]) + ... + min(f[sn,0],f[sn,1],f[sn,2])
3、f[i, 2]:孩子之一有守卫,先枚举哪个孩子有守卫(状态1),然后其他孩子可以有守卫也可以没有(状态1、2);但是 i i i没有守卫,也就是 i i i孩子的父亲没有守卫(状态0不行)。
f[i, 2] = Min{f[sk, 1] + min(f[s1,1], f[s1,2])+...+min(f[sj,1], f[sj,2]) +...+ min(f[sn,1], f[sn,2])} sj != sk。

#include <iostream>
#include <cstring>
using namespace std;

const int N = 1505;
const int INF = 1e9;

int n, f[N][3], val[N];
int nxt[N], lnk[N], head[N], idx;
bool is_son[N];

void add(int a, int b) {
	lnk[idx] = b;
	nxt[idx] = head[a];
	head[a] = idx ++ ;
}

void dfs(int node) {
	f[node][1] = val[node];
	for (int i = head[node]; i != -1; i = nxt[i]) {
		int son = lnk[i];
		dfs(son);
		
		f[node][0] += min(f[son][1], f[son][2]);
		f[node][1] += min(f[son][0], min(f[son][1], f[son][2]));
	}
	
	f[node][2] = INF;
	for (int i = head[node]; i != -1; i = nxt[i]) {
		int son1 = lnk[i];
		int t = f[son1][1];
		for (int j = head[node]; j != -1; j = nxt[j]) {
			int son2 = lnk[j];
			if (son2 == son1) continue;
			t += min(f[son2][1], f[son2][2]);
		}
		f[node][2] = min(f[node][2], t);
	}
}

int main() {
	scanf("%d", &n);
	memset(head, -1, sizeof head);
	int a, b, k, m;
	for (int i = 1; i <= n; i ++ ) {
		scanf("%d%d%d", &a, &k, &m);
		val[a] = k;
		for (int j = 1; j <= m; j ++ ) {
			scanf("%d", &b);
			add(a, b);
			is_son[b] = 1;
		}
	}
	int root; 
	for (int i = 1; i <= n; i ++ ) {
		if (!is_son[i]) root = i;
	}
	dfs(root);
	printf("%d\n", min(f[root][1], f[root][2]));
	return 0;
}

再看第三种情况:
3、f[i, 2]:孩子之一有守卫,先枚举哪个孩子有守卫(状态1),然后其他孩子可以有守卫也可以没有(状态1、2);但是 i i i没有守卫,也就是 i i i孩子的父亲没有守卫(状态0不行)。
f[i, 2] = Min{f[sk, 1] + min(f[s1,1], f[s1,2])+...+min(f[sj,1], f[sj,2]) +...+ min(f[sn,1], f[sn,2])},sj != sk。

其实第三种状态枚举的时候,不需要挨个求min(f[sj,1], f[sj,2]),可以先求个所有 s j s_j sjmin(f[sj,1], f[sj,2])的和,再扣掉 s k s_k skmin(f[sk,1], f[sk,2])、加上f[sk,1]
而所有 s j s_j sjmin(f[sj,1], f[sj,2])的和就是f[i, 0]

因此上面31~36行可改成下面的14行

void dfs(int node) {
	f[node][1] = val[node];
	for (int i = head[node]; i != -1; i = nxt[i]) {
		int son = lnk[i];
		dfs(son);
		
		f[node][0] += min(f[son][1], f[son][2]);
		f[node][1] += min(f[son][0], min(f[son][1], f[son][2]));
	}
	
	f[node][2] = INF;
	for (int i = head[node]; i != -1; i = nxt[i]) {
		int son = lnk[i];
		int t = f[node][0] - min(f[son][1], f[son][2]) + f[son][1];
		f[node][2] = min(f[node][2], t);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值