战略游戏的加强版,只要保证每个点自身被选或其相邻的点被选就可以。
由于相邻的点包括父亲和孩子,所以只考虑孩子状态不够,还要考虑父亲,因此设3个状态:
设当前结点是点
i
i
i,孩子结点是
s
1
,
s
2
,
.
.
.
,
s
n
s_1, s_2, ..., s_n
s1,s2,...,sn,父亲结点是
p
p
p
1、f[i, 0]
:
p
p
p有守卫,那么
i
i
i的孩子可以有守卫、也可以没有(状态1、2);但是
i
i
i没有守卫,也就是
i
i
i孩子的父亲没有守卫(状态0不行)。
f[i, 0] = min(f[s1, 1], f[s1, 2]) + min(f[s2, 1], f[s2, 2]) + ... + min(f[sn, 1], f[sn, 2])
2、f[i, 1]
:
i
i
i有守卫,那么
i
i
i的孩子什么状态都行
f[i, 1] = w[i] + min(f[s1,0],f[s1,1],f[s1,2]) + min(f[s2,0],f[s2,1],f[s2,2]) + ... + min(f[sn,0],f[sn,1],f[sn,2])
3、f[i, 2]
:孩子之一有守卫,先枚举哪个孩子有守卫(状态1),然后其他孩子可以有守卫也可以没有(状态1、2);但是
i
i
i没有守卫,也就是
i
i
i孩子的父亲没有守卫(状态0不行)。
f[i, 2] = Min{f[sk, 1] + min(f[s1,1], f[s1,2])+...+min(f[sj,1], f[sj,2]) +...+ min(f[sn,1], f[sn,2])}
sj != sk。
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1505;
const int INF = 1e9;
int n, f[N][3], val[N];
int nxt[N], lnk[N], head[N], idx;
bool is_son[N];
void add(int a, int b) {
lnk[idx] = b;
nxt[idx] = head[a];
head[a] = idx ++ ;
}
void dfs(int node) {
f[node][1] = val[node];
for (int i = head[node]; i != -1; i = nxt[i]) {
int son = lnk[i];
dfs(son);
f[node][0] += min(f[son][1], f[son][2]);
f[node][1] += min(f[son][0], min(f[son][1], f[son][2]));
}
f[node][2] = INF;
for (int i = head[node]; i != -1; i = nxt[i]) {
int son1 = lnk[i];
int t = f[son1][1];
for (int j = head[node]; j != -1; j = nxt[j]) {
int son2 = lnk[j];
if (son2 == son1) continue;
t += min(f[son2][1], f[son2][2]);
}
f[node][2] = min(f[node][2], t);
}
}
int main() {
scanf("%d", &n);
memset(head, -1, sizeof head);
int a, b, k, m;
for (int i = 1; i <= n; i ++ ) {
scanf("%d%d%d", &a, &k, &m);
val[a] = k;
for (int j = 1; j <= m; j ++ ) {
scanf("%d", &b);
add(a, b);
is_son[b] = 1;
}
}
int root;
for (int i = 1; i <= n; i ++ ) {
if (!is_son[i]) root = i;
}
dfs(root);
printf("%d\n", min(f[root][1], f[root][2]));
return 0;
}
再看第三种情况:
3、f[i, 2]
:孩子之一有守卫,先枚举哪个孩子有守卫(状态1),然后其他孩子可以有守卫也可以没有(状态1、2);但是
i
i
i没有守卫,也就是
i
i
i孩子的父亲没有守卫(状态0不行)。
f[i, 2] = Min{f[sk, 1] + min(f[s1,1], f[s1,2])+...+min(f[sj,1], f[sj,2]) +...+ min(f[sn,1], f[sn,2])}
,sj != sk。
其实第三种状态枚举的时候,不需要挨个求min(f[sj,1], f[sj,2])
,可以先求个所有
s
j
s_j
sj的min(f[sj,1], f[sj,2])
的和,再扣掉
s
k
s_k
sk的min(f[sk,1], f[sk,2])
、加上f[sk,1]
。
而所有
s
j
s_j
sj的min(f[sj,1], f[sj,2])
的和就是f[i, 0]
。
因此上面31~36行可改成下面的14行
void dfs(int node) {
f[node][1] = val[node];
for (int i = head[node]; i != -1; i = nxt[i]) {
int son = lnk[i];
dfs(son);
f[node][0] += min(f[son][1], f[son][2]);
f[node][1] += min(f[son][0], min(f[son][1], f[son][2]));
}
f[node][2] = INF;
for (int i = head[node]; i != -1; i = nxt[i]) {
int son = lnk[i];
int t = f[node][0] - min(f[son][1], f[son][2]) + f[son][1];
f[node][2] = min(f[node][2], t);
}
}