先预处理出f[i, j]
,代表位数是i
,最高位是j
,不存在4和62的数的个数。
只需看f[i - 1, k]
的k
不是4,且j
和k
不同时是6和2即可。
之后和普通数位DP套路一样,从最高位看到最低位。
注意break的位置,并且加入答案res前也要判断。
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
const int N = 10;
int f[N][N];
void init() {
for (int j = 0; j <= 9; j ++ ) {
if (j != 4) f[1][j] = 1;
}
for (int i = 2; i <= N; i ++ ) {
for (int j = 0; j <= 9; j ++ ) {
for (int k = 0; k <= 9; k ++ ) {
if (j == 4 || k == 4 || j == 6 && k == 2) continue;
f[i][j] += f[i - 1][k];
}
}
}
}
int dp(int n) {
if (!n) return 1;
vector<int> nums;
while(n) nums.push_back(n % 10), n /= 10;
int res = 0, last = 0;
for (int i = nums.size() - 1; i >= 0; i -- ) {
int x = nums[i];
for (int j = 0; j < x; j ++ ) {
if (j == 4 || last == 6 && j == 2) continue; // 注意这边也要过滤掉非法情况
res += f[i + 1][j];
}
if (x == 4 || last == 6 && x == 2) break; // 因为退出条件x==4只跟x相关,所以这边的break不能写在for上面,否则会少情况
last = x;
if (!i) res ++ ;
}
return res;
}
int main() {
init();
int a, b;
while(~scanf("%d%d", &a, &b) && (a || b)) {
printf("%d\n", dp(b) - dp(a - 1));
}
return 0;
}