C语言求最大公约数的几种算法

本文详细介绍了四种求解C语言中两个正整数最大公约数的方法:辗转相除法、穷举法、更相减损法和Stein算法。通过递归和非递归方式实现,并提供了源代码示例。在测试过程中,观察到不同算法的运行时间,其中函数嵌套调用的时间最短。在学习过程中,作者还提到了在实际编程中遇到的问题,如更相减损法缺少"math.h"头文件导致的乱码问题,以及对C语言知识的进一步理解,如奇偶性判断和移位运算符的使用。
摘要由CSDN通过智能技术生成
  1. 1辗转相除法

辗转相除法(又名欧几里德法)C语言中用于计算两个正整数a,b的最大公约数和最小公倍数,实质它依赖于下面的定理:
a b=0
gcd(a,b)=
gcd(a mod b) b!=0
其算法过程为:
前提:设两数为a,b设其中a 做被除数,b做除数,temp为余数
1、大数放a中、小数放b中;
2、求a/b的余数;
3、若temp=0则b为最大公约数;
4、如果temp!=0则把b的值给a、temp的值给a;
5、返回第二步;
①函数嵌套调用
源代码:

int divisor (int a,int b)    /*自定义函数求两数的最大公约数*/
{
  int  temp;          /*定义整型变量*/
  if(a<b)             /*通过比较求出两个数中的最大值和最小值*/
    { temp=a;a=b;b=temp;} /*设置中间变量进行两数交换*/
   while(b!=0)           /*通过循环求两数的余数,直到余数为0*/
    {
      temp=a%b;
      a=b;              /*变量数值交换*/
      b=temp;
    }
  return (a);            /*返回最大公约数到调用函数处*/ 
}

②函数递归调用:
源代码:

int gcd (int a,int b)
{  if(a%b==0)/*a%b是否为零*/
       return b; /*b就是最大公约数*/  
else  
       return gcd(b,a%b);/*重复上述过程*/
  }
  1. 2.穷举法

对两个正整数a,b如果能在区间[a,0]或[b,0]内能找到一个整数temp能同时被a和b所整除,则temp即为最大公约数。
源代码:

int qiongju (int a,int b) /*自定义函数求两数的最大公约数*/
{
    int  temp;          /*定义义整型变量*/
    temp=(a>b)?b:a;    /*采种条件运算表达式求出两个数中的最小值*/
    while(temp>0)     
    {
       if (a%temp==0&&b%temp==0) /*只要找到一个数能同时被a,b所整除,则中止循环*/
          break;    
       temp--;      /*如不满足if条件则变量自减,直到能被a,b所整除*/
    }
  return (temp); /*返回满足条件的数到主调函数处*/
}
  1. 3.更相减损法

第一步:任意给出两个正数,判断它们是否都为偶数。若是,用2约减

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值