Python
Python
大胖东
这个作者很懒,什么都没留下…
展开
-
【Python网络爬虫实战案例】Python爬取中国前20强大学
Python爬取中国前20强大学import requestsfrom bs4 import BeautifulSoupimport bs4#为了使用bs4的标签函数#获取页面信息def getHTMLText(url): try: r=requests.get(url,timeout=30) r.raise_for_status() r.encoding=r.apparent_encoding return r.text原创 2020-08-11 11:29:49 · 434 阅读 · 0 评论 -
PyQt5——创建窗口居中效果
QtGui.QDesktopWidget 类提供了有关用户桌面的信息,包括屏幕尺寸。self.center()将居中窗口的代码放置在自定义 center() 方法中。qr = self.frameGeometry()frameGeometry() 方法允许我们创建一个无形矩形并根据主窗口的宽高设置自身的宽度与高度。简单理解就是将这个控件(QWidget)的几何内容(宽高位置等),赋值给...原创 2019-08-20 12:03:44 · 1294 阅读 · 0 评论 -
pyqt 在label上显示图片,清除图片
pyqt 在label上显示图片,清除图片# coding=utf-8import sysfrom PyQt5.QtWidgets import (QWidget, QHBoxLayout, QLabel, QApplication)from PyQt5.QtGui import QPixmapclass Example (QWidget): def __init__(sel...原创 2019-08-20 11:30:53 · 6105 阅读 · 1 评论 -
实现图像逐渐增亮或渐暗
实现图像逐渐增亮或渐暗实现图像逐渐增亮import cv2import numpy as npa=cv2.imread('1.jpg')i=0x=1while i<30: if a[200,100,0]<=0: break M = np.ones(a.shape, dtype='uint8') *x a = cv2.add(a,...原创 2019-08-17 17:46:26 · 375 阅读 · 0 评论 -
python + pyqt +opencv 有界面,对lable中的图片进行图像旋转,向右平移,向下平移,二值化,灰度,边缘检测
对lable中的图片进行图像旋转,向右平移,向下平移,二值化,灰度,边缘检测import cv2import numpy as npimport sysfrom PyQt5 import QtWidgets, QtCore, QtGuifrom PyQt5.QtGui import *from PyQt5.QtWidgets import *from PyQt5.QtCore imp...原创 2019-08-20 11:35:00 · 4489 阅读 · 10 评论 -
Python+OpenCV图像处理—— 边缘检测之 Canny算子(Sobel算子、 Laplacian算子、 Canny算子 、Scharr滤波器)
Python+OpenCV图像处理—— 边缘检测之 Canny算子OpenCV边缘检测的一般步骤为:滤波增强检测常用的边缘检测的算子和滤波器有:Sobel算子Laplacian算子Canny算子Scharr滤波器Canny算子Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:好的检测- 算法能够尽可能多地标识出图像中的实际边缘。好的定位- 标识出的边缘...原创 2019-08-20 15:27:33 · 1509 阅读 · 0 评论 -
Python+OpenCV——摄像头的调取和显示
OpenCV——摄像头的调取和显示def video_demo(): capture=cv2.VideoCapture(0) #参数为视频设备的id ,如果只有一个摄像头可以填0,表示打开默认的摄像头 这里的参数也可以是视频文件名路径,只要把视频文件的具体路径写进去就好 while True: #只要没跳出循环,则会循环播放每一帧 ,waitKey(10)表示间...原创 2019-08-20 16:42:52 · 534 阅读 · 0 评论 -
图像翻转
图像翻转函数:cv2.flip(src,flipcode,dst)src:输入图像flipcode:翻转模式=0:沿x轴翻转(垂直翻转)>0:水平翻转<0:水平垂直翻转dst:输出的图像源代码:import cv2img1=cv2.imread('1.jpg')a=cv2.flip(img1,0) #沿x轴翻转(垂直翻转)b=cv2.flip(img...原创 2019-08-17 18:08:51 · 182 阅读 · 0 评论 -
Python+OpenCV图像处理—— ROI与泛洪填充
原图:代码:import cv2import numpy as npdef file_colr(image): a=image.copy() h,w=image.shape[:2] mask=np.zeros([h+2,w+2],np.uint8) cv2.floodFill(a,mask,(30,30),(0,0,255),(100,100,100),...原创 2019-08-18 11:05:05 · 1288 阅读 · 6 评论 -
Python+Opencv人脸识别
Python+Opencv人脸识别,调用摄像头对人脸和眼睛进行捕获效果图代码原创 2019-12-02 10:16:33 · 1033 阅读 · 0 评论 -
pandlepandle+OpenCV+Pyqt+猫狗分类
**智能猫狗识别任务,用摄像头识别或者输入图片进行识别,软件界面均通过pyqt完成**运行过程截图主界面训练模型打开图片打开摄像头数据准备我使用的是kaggle数据集。用来训练的数据集包含600张的彩色图片,2个类别,每个类包含300张。对猫和狗两类进行预测。网络配置定义了一个较简单的卷积神经网络。显示了其结构:输入的二维图像,先经过三次卷积层、池化层和Ba...原创 2019-12-28 11:31:52 · 1348 阅读 · 2 评论 -
python获取页面li标签-a标签下href的值
def get_title_html(html_1): # soup=BeautifulSoup(html_1,"html.parser") title_url_Date=soup.find('div',class_='clearfix dirconone').find_all('li') for i in title_url_Date: # print(i) url=i.find('a')['href'] print(url).原创 2020-05-22 16:01:01 · 8811 阅读 · 1 评论 -
pyqt5+爬虫+有界面的爬取天气预报
import sysimport urllibfrom json import JSONDecodeErrorimport requestsfrom PyQt5 import QtWidgets, QtCore, QtGuifrom PyQt5.QtGui import *from PyQt5.QtWidgets import *from PyQt5.QtCore import *class XZS(QWidget): def __init__(self): .原创 2020-05-20 16:16:52 · 938 阅读 · 0 评论 -
Python 的json()函数
使用 JSON 函数需要导入 json 库:import jsonjson.dumpsjson.dumps 用于将 Python 对象编码成 JSON 字符串将字符串a改成json格式newa = jsom.dumps(a)json.dump如果你要处理的是文件而不是字符串,你可以使用 json.dump() 编码SON数据with open(‘file’, ‘w’) as f:json.dump(f)json.loadsjson.loads 用于解码 JSON 数据。该函数返回 Pyt原创 2020-05-18 14:46:11 · 770 阅读 · 0 评论 -
Python中random() 函数解释
from random import random ,randint,uniform,choice,randrange,shufflea= randint(1,10) # 产生 1 到 10 的一个整数型随机数b= random() # 产生 0 到 1 之间的随机浮点数c= uniform(1.1,5.4) # 产生 1.1 到 5.4 之间...原创 2020-03-05 09:22:06 · 648 阅读 · 0 评论 -
pycharm常用快捷键
pycharm常用快捷键1、编辑(Editing)Ctrl + Space 基本的代码完成(类、方法、属性)Ctrl + Alt + Space 快速导入任意类Ctrl + Shift + Enter 语句完成Ctrl + P 参数信息(在方法中调用参数)Ctrl + Q 快速查看文档F1 外部文档Shift + F1 外部文档,进入web文档主...原创 2019-08-23 09:40:44 · 393 阅读 · 0 评论