量化交易系列【5】:如何快速的将日K线数据转换为周K线及月K线数据,神奇的resample函数

在股票量化交易时,经常会使用到日K、周K及月K数据,那么我们如何利用日K的数据得到我们想要的周K及月K数据呢?

pandas中有一个专门处理周期的resample函数,可以很方便的对周期进行转换,下面以日K数据转化为周K及月K数据为例进行说明。

示例中使用的‘000001.XSHE.csv’文件,已上传至csdn资源中,可直接下载

导入数据

import pandas as pd
# 读取CSV文件
df = pd.read_csv('./000001.XSHE.csv')
# 显示前n行,默认是5
df.head()
dateopenclosehighlowvolumemoney
02015/1/59.9810.0010.179.744580990374.565388e+09
12015/1/69.909.8510.239.713469524963.453446e+09
22015/1/79.729.679.889.552722744012.634796e+09
32015/1/89.689.349.729.302254455022.128003e+09
42015/1/99.309.429.919.194017364193.835378e+09
# 将交易日期字符串变为日期类型
df['date'] = pd.to_datetime(df['date'])  
# 将日期列设为索引
df.set_index('date', inplace = True)
df.head(10)
openclosehighlowvolumemoney
date
2015-01-059.9810.0010.179.744580990374.565388e+09
2015-01-069.909.8510.239.713469524963.453446e+09
2015-01-079.729.679.889.552722744012.634796e+09
2015-01-089.689.349.729.302254455022.128003e+09
2015-01-099.309.429.919.194017364193.835378e+09
2015-01-129.299.229.409.052487596082.293105e+09
2015-01-139.159.179.309.121308225381.204987e+09
2015-01-149.239.259.499.182022742501.889297e+09
2015-01-159.279.589.589.191989336351.868796e+09
2015-01-169.629.609.759.482491688742.403346e+09

计算周K线数据,求每周的开盘价、收盘价、最大值、最小值

# 定义一个空的df
week_df = pd.DataFrame()
# 求每周的开盘价
week_df['open'] = df['open'].resample('W').first()
# 求每周的收盘价
week_df['close'] = df['close'].resample('W').last()
# 求每周的最大值
week_df['high'] = df['high'].resample('W').max()
# 求每周的最小值
week_df['low'] = df['low'].resample('W').min()
week_df.head(10)
openclosehighlow
date
2015-01-119.989.4210.239.19
2015-01-189.299.609.759.05
2015-01-258.758.999.148.47
2015-02-018.978.709.028.59
2015-02-088.498.449.018.37
2015-02-158.438.718.858.25
2015-02-228.718.748.818.57
2015-03-018.778.748.848.49
2015-03-088.768.398.808.30
2015-03-158.419.369.758.32

以上我们便通过股票的日K数据得到了周K数据。

定义周期转换函数,方便求周K与月K等数据

为了后续更方便的进行数据转换,我们可以直接封装一个函数,只需传输数据及想要转换的周期参数,即可得到相应周期的K线数据,函数定义如下:

def transfer_price_freq(data, time_freq):
    """
    将数据转化为指定周期:开盘价(周期第一天)、收盘价(周期最后一天)、最高价(周期)、最低价(周期)
    :param data:日数据,包含每天开盘价、收盘价、最高价、最低价
    :param time_freq: 转换周期,周:‘W’,月:‘M’
    :return:
    """
    df_trans = pd.DataFrame()
    df_trans['open'] = data['open'].resample(time_freq).first()
    df_trans['close'] = data['close'].resample(time_freq).last()
    df_trans['high'] = data['high'].resample(time_freq).max()
    df_trans['low'] = data['low'].resample(time_freq).min()
    return df_trans
# 我们传入df,及"M"参数即可得到月K数据
month_df = transfer_price_freq(df, 'M')
month_df.head()
openclosehighlow
date
2015-01-319.988.7010.238.47
2015-02-288.498.749.018.25
2015-03-318.769.8310.378.30
2015-04-309.8812.6213.239.71
2015-05-3112.6211.5812.7811.32

同理如果我们有每分钟的股票数据,我们也可以通过该函数得到5分钟K线、10分钟K线、30分钟K线等。

如果内容对你有帮助,记得点赞、关注哦!也欢迎小伙伴们和我共同学习交流。

更多干货内容持续更新中…

也欢迎关注下方我的公众号,共同学习交流,获取更多学习资源。
请添加图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值