高斯模糊函数的原理:
类似于均值滤波(用周围像素点的均值最为中心点的像素值),二维高斯函数滤波也是利用某点周围的数值进行高斯模型处理,再将处理的数值作为该点的像素值。
这里二维高斯模型为:
对lena.jpg原图进行高斯模糊处理,代码如下:
import cv2
import numpy as np
img = cv2.imread(“C:\lena.jpg”,1)
blurred = cv2.GaussianBlur(img,(11,11),0)
‘gaussimg = img - blurred’
cv2.imshow(“Gaussing”,blurred)
cv2.waitKey(0)
lena.jpg原图:
高斯模糊处理后,高斯滤波图blurred为:
得到高斯滤波图blurred后,用原图与高斯滤波图的差值进行特征提取,得到特征图gaussimg。
代码如下:
import cv2
import numpy as np
img = cv2.imread(“C:\lena.jpg”,1)
blurred = cv2.GaussianBlur(img,(11,11),0)
gaussimg = img - blurred
cv2.imshow(“Gaussing”,gaussimg)
cv2.waitKey(0)
显示效果: