Gaussian Blur()的使用说明

高斯模糊函数的原理:
类似于均值滤波(用周围像素点的均值最为中心点的像素值),二维高斯函数滤波也是利用某点周围的数值进行高斯模型处理,再将处理的数值作为该点的像素值。

这里二维高斯模型为:
在这里插入图片描述
对lena.jpg原图进行高斯模糊处理,代码如下:
import cv2
import numpy as np

img = cv2.imread(“C:\lena.jpg”,1)
blurred = cv2.GaussianBlur(img,(11,11),0)
‘gaussimg = img - blurred’
cv2.imshow(“Gaussing”,blurred)
cv2.waitKey(0)
lena.jpg原图:
在这里插入图片描述
高斯模糊处理后,高斯滤波图blurred为:
在这里插入图片描述
得到高斯滤波图blurred后,用原图与高斯滤波图的差值进行特征提取,得到特征图gaussimg。
代码如下:
import cv2
import numpy as np

img = cv2.imread(“C:\lena.jpg”,1)
blurred = cv2.GaussianBlur(img,(11,11),0)
gaussimg = img - blurred
cv2.imshow(“Gaussing”,gaussimg)
cv2.waitKey(0)

显示效果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值