问题描述
Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路。道路被用来连接N个牧场,牧场被连续地编号为1到N。每一个牧场都是一个奶牛的家。FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性。你首先要决定那些道路是需要保留的N-1条道路。第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间。没有两个牧场是被一条以上的道路所连接。奶牛们非常伤心,因为她们的交通系统被削减了。你需要到每一个奶牛的住处去安慰她们。每次你到达第i个牧场的时候(即使你已经到过),你必须花去Ci的时间和奶牛交谈。你每个晚上都会在同一个牧场(这是供你选择的)过夜,直到奶牛们都从悲伤中缓过神来。在早上 起来和晚上回去睡觉的时候,你都需要和在你睡觉的牧场的奶牛交谈一次。这样你才能完成你的 交谈任务。假设Farmer John采纳了你的建议,请计算出使所有奶牛都被安慰的最少时间。
输入格式
第1行包含两个整数N和P。
接下来N行,每行包含一个整数Ci。
接下来P行,每行包含三个整数Sj, Ej和Lj。
输出格式
输出一个整数, 所需要的总时间(包含和在你所在的牧场的奶牛的两次谈话时间)。
样例输入
5 6
10
10
20
6
30
1 2 5
2 3 5
2 4 12
3 4 17
2 5 15
3 5 6
样例输出
178
数据规模与约定
5 <= N <= 10000,N-1 <= P <= 100000,0 <= Lj <= 1000,1 <= Ci <= 1,000。
这个题考察的主要是最小生成树,但是除了要计算边的权值以外,还要考虑结点上的权值,而且因为每条边要经过两次,所以可以把边上的权值变成边上权值*2+两结点的权值。 然后还要选择睡觉的农场,所以应选择权值最小的那个结点,再与最小生成树所求得的最优解相加。(原题目的数据不太对,我上网看了看改了一下,样例输出和AC代码吻合)
#include<bits/stdc++.h>
using namespace std;
int node[10001];//结点上的权值
int f[10001];//判断连通,是否形成闭合的圈
int n,p;
struct Side//边
{
int x,y,d;
}e[100001];
int find(int x){//寻找某点的终点
return f[x]==x?x:f[x] = find(f[x]);
}
bool cmp(Side e1,Side e2){//排序
return e1.d<e2.d;
}
int kruscal(){//计算总的权值之和
int sum=0;
sort(e,e+p,cmp);
for(int i=0;i<p;i++){
int x=find(e[i].x);//求两点终点
int y=find(e[i].y);
if(x!=y){//若未形成闭合圈
f[x]=y;
sum+=e[i].d;
}
}
return sum;
}
int main()
{
cin>>n>>p;
for(int i=1;i<=n;i++){
cin>>node[i];
}
for(int i=0;i<p;i++){
cin>>e[i].x>>e[i].y>>e[i].d;
e[i].d=e[i].d*2+node[e[i].x]+node[e[i].y];
}
for(int i=1;i<=n;i++){//各点初始化
f[i]=i;
}
int minn=100000;
for(int i=1;i<=n;i++){//找出权值最小的结点
if(node[i]<minn)minn=node[i];
}
cout<<minn+kruscal()<<endl;
return 0;
}