大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾箱住。所以垃圾箱的位置必须选在到所有居民点的最短距离最长的地方,同时还要保证每个居民点都在距离它一个不太远的范围内。
现给定一个居民区的地图,以及若干垃圾箱的候选地点,请你推荐最合适的地点。如果解不唯一,则输出到所有居民点的平均距离最短的那个解。如果这样的解还是不唯一,则输出编号最小的地点。
输入格式:
输入第一行给出4个正整数:N(≤10
3
)是居民点的个数;M(≤10)是垃圾箱候选地点的个数;K(≤10
4
)是居民点和垃圾箱候选地点之间的道路的条数;D
S
是居民点与垃圾箱之间不能超过的最大距离。所有的居民点从1到N编号,所有的垃圾箱候选地点从G1到GM编号。
随后K行,每行按下列格式描述一条道路:
P1 P2 Dist
其中P1和P2是道路两端点的编号,端点可以是居民点,也可以是垃圾箱候选点。Dist是道路的长度,是一个正整数。
输出格式:
首先在第一行输出最佳候选地点的编号。然后在第二行输出该地点到所有居民点的最小距离和平均距离。数字间以空格分隔,保留小数点后1位。如果解不存在,则输出No Solution。
输入样例1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
输出样例1:
G1
2.0 3.3
输入样例2:
2 1 2 10
1 G1 9
2 G1 20
输出样例2:
No Solution
看题是种折磨,在做出这道题前永远不知道自己时候理解对了题意,这题意思就是给了<=10个垃圾地点,分别从这些地点去进行单源最短路,要保证距离任意一个居民家都小于等于d,在这个条件下然后取距离居民家的路径最小值尽可能长的那个地点*&……%……&……&*% 真的烦,理解题意比算法本身更加折磨
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f,N=2000;
int n,m,k,d,ans=-1,gg;
int g[N][N],dist[N];
double avg,sum;
bool st[N];
int toi(string s)
{
int num=0;
if(isdigit(s[0])){
for(int i=0;i<s.size();++i){
num*=10;
num+=s[i]-'0';
}
}
else {
for(int i=1;i<s.size();++i){
num*=10;
num+=s[i]-'0';
}
}
return num;
}
void dijkstra(int u){
memset(dist,0x3f,sizeof dist);
memset(st,0,sizeof st);
dist[u]=0;
for(int i=0;i<n+m;++i)
{
int t=-1;
for(int j=1;j<=n+m;++j){
if(st[j]==false&&(t==-1||dist[j]<dist[t]))t=j;
}
st[t]=true;
for(int j=1;j<=n+m;++j)
{
if(dist[j]>dist[t]+g[t][j])dist[j]=dist[t]+g[t][j];
}
}
}
int main(){
cin>>n>>m>>k>>d;
for(int i=1;i<=n+10;++i)
for(int j=1;j<=n+10;++j)
g[i][j]=INF;
while(k--)
{
string a,b;int c;
cin>>a>>b>>c;
int x,y;
x=toi(a);
y=toi(b);
if(isdigit(a[0])==false)x+=n;
if(isdigit(b[0])==false)y+=n;
if(g[x][y]>c){
g[x][y]=g[y][x]=c;
}
}
for(int i=n+1;i<=n+m;++i){
dijkstra(i);
sum=0;
bool flag=true;
int t=INF;
for(int i=1;i<=n;++i){
t=min(t,dist[i]);
sum+=dist[i];
if(dist[i]>d){
//cout<<i<<endl;
flag=false;break;
}
}
if(flag==false)continue;
if(t>ans){
ans=t;avg=sum/n;
gg=i;
}else if(t==ans){
double p=sum/n;
if(p<avg){
avg=p;
gg=i;
}
}
}
if(ans==-1)cout<<"No Solution";
else {
cout<<"G"<<gg-n<<endl;
printf("%.1f %.1f",(double)ans,avg);
}
return 0;
}