【题解】Leetcode周赛299 拼接数组的最大分数 困难

本文探讨了如何利用动态规划策略解决LeetCode周赛299题,通过交换两个数组的部分子数组来最大化总分数。实例分析了如何计算nums1和nums2的最大分数,通过比较并结合最大子数组和的概念。

题目来源: Leetcode周赛299
标签:动态规划

给你两个下标从 0 开始的整数数组 nums1 和 nums2 ,长度都是 n 。

你可以选择两个整数 left 和 right ,其中 0 <= left <= right < n ,接着 交换 两个子数组 nums1[left…right] 和 nums2[left…right] 。

  • 例如,设 nums1 = [1,2,3,4,5] 和 nums2 = [11,12,13,14,15] ,整数选择 left = 1 和 right = 2,那么 nums1 会变为 [1,12,13,4,5] 而 nums2 会变为 [11,2,3,14,15] 。

你可以选择执行上述操作 一次 或不执行任何操作。

数组的 分数 取 sum(nums1) 和 sum(nums2) 中的最大值,其中 sum(arr) 是数组 arr 中所有元素之和。

返回 可能的最大分数 。

子数组 是数组中连续的一个元素序列。arr[left…right] 表示子数组包含 nums 中下标 left 和 right 之间的元素(含 下标 left 和 right 对应元素)。

输入:nums1 = [60,60,60], nums2 = [10,90,10]
输出:210
解释:选择 left = 1 和 right = 1 ,得到 nums1 = [60,90,60] 和 nums2 = [10,60,10] 。
分数为 max(sum(nums1), sum(nums2)) = max(210, 80) = 210 。

题目解析:
在这里插入图片描述

class Solution {
	// 求数组nums的最大子数组和
    private int maxSubArraySum(int [] nums){
        int n = nums.length;
        int max_sum = 0;
        int nowsum = 0;
        for (int i = 0;i < n;i++){
        	// 如果加上当前数会使得和小于零,并跳过该数
            nowsum = Math.max(nowsum + nums[i],0);
            max_sum = Math.max(max_sum,nowsum); // 更新最大子数组和
        }
        return max_sum;
    }
    // 以 A 数组作为基准,求得交换后 A数组能够获得的最大值
    private int maxSubDiffArray(int [] A,int [] B){
        int n = A.length;
        int sum = Arrays.stream(A).sum();
        int [] diff = new int[n];
        for (int i = 0;i < n;i++){
            diff[i] = B[i] - A[i];
        }
        return sum + maxSubArraySum(diff);
    }
    // 求拼接数组最大分数
    public int maximumsSplicedArray(int[] nums1, int[] nums2) {
        return Math.max(maxSubDiffArray(nums1,nums2),maxSubDiffArray(nums2,nums1));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值