题目来源: Leetcode周赛299
标签:动态规划
给你两个下标从 0 开始的整数数组 nums1 和 nums2 ,长度都是 n 。
你可以选择两个整数 left 和 right ,其中 0 <= left <= right < n ,接着 交换 两个子数组 nums1[left…right] 和 nums2[left…right] 。
- 例如,设 nums1 = [1,2,3,4,5] 和 nums2 = [11,12,13,14,15] ,整数选择 left = 1 和 right = 2,那么 nums1 会变为 [1,12,13,4,5] 而 nums2 会变为 [11,2,3,14,15] 。
你可以选择执行上述操作 一次 或不执行任何操作。
数组的 分数 取 sum(nums1) 和 sum(nums2) 中的最大值,其中 sum(arr) 是数组 arr 中所有元素之和。
返回 可能的最大分数 。
子数组 是数组中连续的一个元素序列。arr[left…right] 表示子数组包含 nums 中下标 left 和 right 之间的元素(含 下标 left 和 right 对应元素)。
输入:nums1 = [60,60,60], nums2 = [10,90,10]
输出:210
解释:选择 left = 1 和 right = 1 ,得到 nums1 = [60,90,60] 和 nums2 = [10,60,10] 。
分数为 max(sum(nums1), sum(nums2)) = max(210, 80) = 210 。
题目解析:
class Solution {
// 求数组nums的最大子数组和
private int maxSubArraySum(int [] nums){
int n = nums.length;
int max_sum = 0;
int nowsum = 0;
for (int i = 0;i < n;i++){
// 如果加上当前数会使得和小于零,并跳过该数
nowsum = Math.max(nowsum + nums[i],0);
max_sum = Math.max(max_sum,nowsum); // 更新最大子数组和
}
return max_sum;
}
// 以 A 数组作为基准,求得交换后 A数组能够获得的最大值
private int maxSubDiffArray(int [] A,int [] B){
int n = A.length;
int sum = Arrays.stream(A).sum();
int [] diff = new int[n];
for (int i = 0;i < n;i++){
diff[i] = B[i] - A[i];
}
return sum + maxSubArraySum(diff);
}
// 求拼接数组最大分数
public int maximumsSplicedArray(int[] nums1, int[] nums2) {
return Math.max(maxSubDiffArray(nums1,nums2),maxSubDiffArray(nums2,nums1));
}
}