AI化身心脏病“专家” 为心脏健康保驾护航

去年世界卫生组织(WHO)和国际劳工组织(ILO)发布的全球首份关于长时间工作对健康影响的调查报告显示,一年中全球有74.5万人死于长时间工作,大约每分钟,就有近1.5个人因加班而死亡。报告中的“长时间工作”指的是每周工作55小时,比“996”还少17个小时。报告称有充分证据表明,与每周工作35~40小时的人相比,长时间工作(≥55小时/周)的人,中风的风险增加 35%,死于缺血性心脏病的风险增加17%。

亚健康正敲响警钟

心脏疾病亟需重视

现代生活节奏快压力大,各行各业“内卷”严重,年轻群体因不规律不健康的生活方式正“温水煮青蛙”般消耗着身体机能,致使身体处于亚健康状态。而一边喝酒熬夜,一边跑步健身,成为90后常见的朋克养生法。人在熬夜后血管很脆弱,而健身会让肌肉充血,血管扩张,加大心脏泵血压力,就像一个充满气的气球,再充就爆了。

2020年《中国急救医学》刊登的《我国5516例尸解猝死病例流行特征分析》显示,我国猝死发生的首要原因是心源性猝死,约占比80%,据中国疾病死亡人数统计,我国每年心源性猝死的人数约为54.4万,大约每分钟就有1人发生心源性猝死。

突发心源性猝死的人,绝大多数都患有某种心脏基础疾病​,包括缺血性心肌病(如冠心病)和非缺血性心脏病(包括肥厚型心肌病、扩张型心肌病、致心律失常型右室心肌病、离子通道、心力衰竭等)。有这类心脏基础疾病的患者,很容易因过度劳累、情绪激动、剧烈运动等情况诱发心肌急性缺血,导致急性心肌梗死,甚至猝死。

AI化身心脏病“专家”

让心脏病预测更精准

那么这类心脏基础疾病可以早发现早预防吗?答案是肯定的。

近日,位于西达赛奈医疗中心的斯密特心脏研究所(Smidt Heart Institute)在《JAMA Cardiology》发表文章称首次研发出一种AI工具,可以有效识别两种经常被忽视却能危及生命的心脏疾病:肥厚型心肌病和心脏淀粉样变性。

▲《JAMA Cardiology》原文截图

▲(左)正常心脏  (右)肥厚型心肌病

该研究所基于神经网络的深度学习,以34000多个心脏超声波视频作为数据样本支撑,通过对海量特征数据的识别和分析,获取了心脏壁厚度和心室大小相关的特定特征,从而建立起有效的AI算法模型,在读取新的图像数据时通过特征的分析比对,分辨出潜在的心脏疾病患者。微妙精细的线索,能比经验丰富的临床专家更精准地识别出高风险患者,将其与看起来非常相似的良性心脏区分开,在患者身体状况发展到可能影响健康的程度之前,及时发出预警信号,从而有效防止心脏衰竭、猝死等恶劣情况的出现。

▲AI检测心脏病原理

坤前AI服务器

助力医学研究高效发展

AI的深度数据挖掘通常依赖于数百万甚至数十亿个参数的深度网络,这样复杂的大规模模型通常对算力有着极高的要求。

深圳某抗肿瘤药物研究实验室的肿瘤病理分析,需要从海量医学影像数据中提取大量的定量特征,为了提高项目研究效率,满足深度学习算法的大规模运算,​坤前选用KI4208G构建核心算力集群助力该实验室系统高效、稳定运行。​坤前KI4208G满足对空间部署和高性能的要求,体现了性能、扩展性和密度的完美融合,强大的配置和扩展能力为I/O并发提供稳定可靠的支撑,出色的图形处理能力和高性能计算能力可为海量数据的分析提供强劲算力,让抗肿瘤研究更加高效。

医学专家在临床抗击疾病保障患者健康,医学研究领域的科学家们也在用新兴技术进行着病理研究、疾病检测和药物研发,为人类健康而保驾护航。AI的出现为医学健康领域的研究带来了有力的工具和高效的方案,从深度基因层面探索解开疾病的钥匙。算力兴则AI兴,坤前将在底层算力的发展道路上不断前行,筑牢科学进步之阶。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值