近期必读的6篇 NeurIPS 2019 的零样本学习(Zero-Shot Learning)论文

本文汇总了2019年NeurIPS会议上关于零样本学习(Zero-Shot Learning, ZSL)的6篇重要论文,涵盖知识迁移、转导ZSL、多注意力定位、ZSL语义分割等方向,旨在探讨如何在无目标类数据的情况下进行有效学习和迁移。" 123458917,10054618,VxWorks实时操作系统多任务与通信详解,"['嵌入式硬件', '驱动开发', '实时操作系统']
摘要由CSDN通过智能技术生成

                近期必读的6篇 NeurIPS 2019 的零样本学习(Zero-Shot Learning)论文

                                             PS:转发自“专知”公众号

 

【导读】NeurIPS 是全球最受瞩目的AI、机器学习顶级学术会议之一,每年全球的人工智能爱好者和科学家都会在这里聚集,发布最新研究。NIPS 2019大会已经在12月8日-14日在加拿大温哥华举行。这次专知小编发现零样本学习(Zero-Shot Learning, ZSL)在今年的NeurIPS出现了好多篇,也突出其近期的火热程度, 为此,专知小编整理了NIPS 2019零样本学习(Zero-Shot Learning)相关的论文供大家学习收藏—零样本知识迁移、Transductive ZSL、多注意力定位、ZSL语义分割、对偶对抗语义一致网络。

 

 

1. Zero-shot Knowledge Transfer via Adversarial Belief Matching

作者:Paul Micaelli and Amos Storkey 

摘要:在现代深度学习应用中,将知识从一个大的teacher network迁移到一个小的student network中是一个很受欢迎的任务。然而,由于数据集的规模越来越大,隐私法规也越来越严格,越来越多的人无法访问用于训练teacher network的数据。我们提出一种新方法,训练student network在不使用任何数据或元数据的情况下,与teacher network的预测相匹配。我们通过训练一个对抗生成器来搜索student与teacher匹配不佳的图片,然后使用它们来训练student,从而达到这个目的。我们得到的student在SVHN这样的简单数据集上与teacher非常接近,而在CIFAR10上,尽管没有使用数据,我们在few-shot distillation (100 images per class)的技术水平上进行了改进。最后,我们还提出了一种度量标准,来量化teacher与student在决策边界附近的信念匹配程度,并观察到我们的zero-shot student与teacher之间的匹配程度显著高于用真实数据提取的student与teacher之间的匹配程度。我们的代码链接如下: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值