二分查找汇总

目录

一、相关知识

0. 二分查找特点:

1. 二分查找题型

2. 边界问题

标准二分查找模板

二分查找边界问题模板

什么时候用模板1?什么时候用模板2?

为什么模板要取 while( l < r),而不是while( l <= r)?

while循环结束条件是l >= r,但为什么二分结束时我们优先取r而不是l?

二、LeetCode题型:

.....................................完善中...............................................

611. 有效三角形的个数(Medium)

875.爱吃香蕉的珂珂(Medium)

1011.在D天内送达包裹的能力(Medium)


一、相关知识

0. 二分查找特点:

单调区间(非绝对单调,可有相等值)

数组:满足随机存取

时间复杂度O(lonN)

1. 二分查找题型

  1. 标准二分查找:找到target的位置    leetcode:35.搜索插入位置
  2. 寻找第一个 > target 的位置(右边界问题)
  3. 寻找第一个 >= target 的位置(右边界问题)
  4. 寻找第一个 < target 的位置(左边界问题)
  5. 寻找第一个 <= target 的位置(左边界问题)

2. 边界问题

34. 在排序数组中查找元素的第一个和最后一个位置

  1. 左边界问题:
  2. 右边界问题:

标准二分查找模板

// 函数 f 是关于自变量 x 的单调函数
int f(int x) {
    // ...
}

// 主函数,在 f(x) == target 的约束下求 x 的最值
int solution(int[] nums, int target) {
    if (nums.length == 0) return -1;
    // 问自己:自变量 x 的最小值是多少?
    int left = ...;
    // 问自己:自变量 x 的最大值是多少?
    int right = ... + 1;

    while (left < right) {
        int mid = left + (right - left) / 2;
        if (f(mid) == target) {
            // 问自己:题目是求左边界还是右边界?
            // ...
        } else if (f(mid) < target) {
            // 问自己:怎么让 f(x) 大一点?
            // ...
        } else if (f(mid) > target) {
            // 问自己:怎么让 f(x) 小一点?
            // ...
        }
    }
    return left;
}

二分查找边界问题模板

class Solution {
    public int[] searchRange(int[] nums, int target) {
        //预先判断
        if(nums.length == 0)  return new int[]{-1, -1};

        //寻找左边界(模板1)
        int l = 0, r = nums.length - 1;
        while(l < r){
            int mid = (l + r) / 2;
            if(nums[mid] >= target)  r = mid;
            else  l = mid + 1;
        }
        if(nums[r] != target)  return new int[]{-1, -1};
        int L = r;

        //寻找右边界(模板2)
        l = 0; r = nums.length-1;
        while(l < r){
            int mid = (l + r + 1) / 2;  //向上取整,l与r相邻时死循环
            if(nums[mid] <= target)  l = mid;
            else  r = mid - 1;
        }

        //退出while循环后结果优先存储在r中
        //有左边界就一定会有右边界,这里直接返回不用再if判断
        return new int[]{L, r};
    }
}

什么时候用模板1?什么时候用模板2?

模板1和模板2的差别:

在于等号是和大于在一起还是小于在一起,以左边界举例的话就是每次边界收缩时 l指针mid+1左侧的mid一定是小于target的,这就保证了循环结束时 L指针的左侧必定和自己相异

求左边界问题用模板2:如果左边界l要更新为 l = mid,此时我们就要使用模板2,让 mid = (l + r + 1)/ 2,否则while会陷入死循环。

右边界问题用模板1:如果左边界l更新为l = mid + 1,此时我们就使用模板1,让mid = (l + r)/2。

为什么模板要取 while( l < r),而不是while( l <= r)?

本质上取l < r和 l <= r是没有任何区别的,如果取l <= r,只需要修改对应的更新区间即可。

while循环结束条件是l >= r,但为什么二分结束时我们优先取r而不是l?

二分的while循环的结束条件是l >= r,所以在循环结束时l有可能会大于r,此时就可能导致越界,因此,基本上二分问题优先取r都不会翻车


二、LeetCode题型:

.....................................完善中...............................................

611. 有效三角形的个数(Medium)

class Solution {
    public int triangleNumber(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int res = 0;
        for (int i = 0; i < n - 2; ++i) {
            for (int j = i + 1; j < n - 1; ++j) {
                int s = nums[i] + nums[j];
                //寻找第一个比两边之和大的元素,相当于找右边界的二分查找
                int l = j + 1, r = n - 1;        //确定查找范围[j+1, n-1]
                while (l < r) {
                    int mid = l + r + 1 >>> 1;   //右边界问题,反之l与r相邻时死循环
                    if (nums[mid] < s) l = mid;  //往右收缩
                    else r = mid - 1;            //往左收缩
                }
                if (nums[r] < s) {               //r与=号绑定,最终r停在右边界
                    res += r - j;
                }
            }
        }
        return res;
    }
}

双指针法:

首先对数组排序。
固定最长的一条边,运用双指针扫描
如果 nums[l] + nums[r] > nums[i],同时说明 nums[l + 1] + nums[r] > nums[i], ..., nums[r - 1] + nums[r] > nums[i],满足的条件的有 r - l 种,r 左移进入下一轮
如果 nums[l] + nums[r] <= nums[i],l 右移进入下一轮。
枚举结束后,总和就是答案。
时间复杂度为 O(n^2)

//双指针解法
class Solution {
    public int triangleNumber(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int res = 0;
        for (int i = n - 1; i >= 2; --i) {
            int l = 0, r = i - 1;
            while (l < r) {
                if (nums[l] + nums[r] > nums[i]) {
                    res += r - l;
                    --r;
                } else {
                    ++l;
                }
            }
        }
        return res;
    }
}

875.爱吃香蕉的珂珂(Medium)

class Solution {
    public int minEatingSpeed(int[] piles, int h) {
        //确定速度范围,left需要设置为1,最少一小时吃一根香蕉
        int left = 1, right = 1;
        for (int pile : piles) {
            right = Math.max(right, pile);
        }

        //二分左边界问题
        while(left < right) {
            int mid = left + (right - left) / 2;
            int count = 0;
            for(int pile : piles) {
                count += (pile - 1) / mid + 1;  //向上取整
            }
            if(h >= count)  right = mid;
            else left = mid + 1;
        }
        return left;
    }
}

1011.在D天内送达包裹的能力(Medium)

 

class Solution {
    public int shipWithinDays(int[] nums, int days) {
        //确定二分范围(船运载能力的范围)
        int l = Arrays.stream(nums).max().getAsInt();  //包裹不能拆分,最少运送最大包裹的重量 
        int r = Arrays.stream(nums).sum();  //所有包裹的重量和

        //二分查找左边界问题
        while(l < r){
            int mid = l + (r - l) / 2;

            //相当于check()函数
            int day = 1;
            int sum = 0;
            for(int num : nums){
                if(sum + num > mid){
                    day++;
                    sum = 0;
                }
                sum += num;
            }

            //二分查找部分
            if(days >= day){
                r = mid;
            }else{
                l = mid + 1;
            }
        }
        return r;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值