CodeForces - 1105D Kilani and the Game

D. Kilani and the Game

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Kilani is playing a game with his friends. This game can be represented as a grid of size n×mn×m, where each cell is either empty or blocked, and every player has one or more castles in some cells (there are no two castles in one cell).

The game is played in rounds. In each round players expand turn by turn: firstly, the first player expands, then the second player expands and so on. The expansion happens as follows: for each castle the player owns now, he tries to expand into the empty cells nearby. The player ii can expand from a cell with his castle to the empty cell if it's possible to reach it in at most sisi (where sisi is player's expansion speed) moves to the left, up, right or down without going through blocked cells or cells occupied by some other player's castle. The player examines the set of cells he can expand to and builds a castle in each of them at once. The turned is passed to the next player after that.

The game ends when no player can make a move. You are given the game field and speed of the expansion for each player. Kilani wants to know for each player how many cells he will control (have a castle their) after the game ends.

Input

The first line contains three integers nn, mm and pp (1≤n,m≤10001≤n,m≤1000, 1≤p≤91≤p≤9) — the size of the grid and the number of players.

The second line contains pp integers sisi (1≤s≤1091≤s≤109) — the speed of the expansion for every player.

The following nn lines describe the game grid. Each of them consists of mm symbols, where '.' denotes an empty cell, '#' denotes a blocked cell and digit xx (1≤x≤p1≤x≤p) denotes the castle owned by player xx.

It is guaranteed, that each player has at least one castle on the grid.

Output

Print pp integers — the number of cells controlled by each player after the game ends.

Examples

input

Copy

3 3 2
1 1
1..
...
..2

output

Copy

6 3 

input

Copy

3 4 4
1 1 1 1
....
#...
1234

output

Copy

1 4 3 3 

Note

The picture below show the game before it started, the game after the first round and game after the second round in the first example:

In the second example, the first player is "blocked" so he will not capture new cells for the entire game. All other player will expand up during the first two rounds and in the third round only the second player will move to the left.

 

 

看似si很大,但其实能走的格子最多只有1000*1000,直接暴力跑两个bfs模拟就可以了。

一个bfs模拟每个玩家回合开始的起点,另一个bfs模拟每个起点能到达的地方。

 

比赛时写的是bfs+dfs ,但是dfs会漏掉一些点,也是因为时间比较少,思维不够缜密。

#include "bits/stdc++.h"
using namespace std;
const int mod = 1e9+7;
int s[15];
int ans[15];
int n,m,p;
int f[4][2]={0,1,0,-1,1,0,-1,0};

struct node
{
    int x,y,id,st;
    bool friend operator < (node a,node b)
    {
        return a.id<b.id;
    }
};

char mp[1004][1004];

bool in(int x,int y) { return x>=1&&x<=n&&y>=1&&y<=m&&mp[x][y]=='.'; }

queue<node>q;
queue<node>q2;

void bfs(node tt)//暴搜能到达的地方,将每个城堡push进第一个队列
{
    q2.push(tt);
    while(!q2.empty())
    {
        node t=q2.front();
        q2.pop();
        if(t.st==0)continue;
        for (int i = 0; i < 4 ; ++i) {
            int tx=t.x+f[i][0];
            int ty=t.y+f[i][1];
            if(in(tx,ty))
            {
                mp[tx][ty]=t.id+'0';
                ans[t.id]++;
                q.push({tx,ty,t.id,s[t.id]});
                q2.push({tx,ty,t.id,t.st-1});
            }
        }
    }

}
int main()
{
    scanf("%d%d%d",&n,&m,&p);
    for (int i = 1; i <= p; ++i) {
        scanf("%d",&s[i]);
    }
    memset(ans,0, sizeof(ans));
    vector<node>v;
    for (int i = 1; i <= n; ++i) {
        getchar();
        for (int j = 1; j <= m; ++j) {
            scanf("%c",&mp[i][j]);
            if(mp[i][j]<='9'&&mp[i][j]>='1')
            {
                v.push_back({i,j,mp[i][j]-'0'});
                ans[mp[i][j]-'0']++;
            }
        }
    }
    sort(v.begin(),v.end());//按照id先后
    for (int i = 0; i < v.size(); ++i) {
        v[i].st=s[v[i].id];
        q.push(v[i]);
    }
    while(!q.empty())
    {
        node t=q.front();
        q.pop();
        while(!q2.empty())q2.pop();
        bfs(t);
    }
    for (int i = 1; i < p; ++i) {
        printf("%d ",ans[i]);
    }
    printf("%d\n",ans[p]);
}

 

CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值