正解:线段树合并
解题报告:
考虑对树上的每个节点开一棵权值线段树,动态开点,记录一个max(num,id)(这儿的id,define了一下,,,指的是从小到大排QAQ
然后修改操作可以考虑树上差分,大概形式就tr[l]++,tr[r]++,tr[lca]--,tr[lca.fa]--
然后最后求和的时候从底向上合并一边合并一边输出就好
然后这题是有点儿卡空间的(但是我开始学的时候就学的是比较节省空间的那种,,,所以其实并麻油卡住我23333
但是还是总结下线段树合并的几个比较常见的省空间操作
1)空间回收
不难想到在合并两棵树的时候,会有一棵树在合并之后就麻油用了嘛,就很浪费那些点
所以我们可以优先考虑重复利用不再会被用到的节点
所以另外开一个数组,存能被重新利用的节点的编号
具体代码看下面趴并不难理解不说了QAQ
但是这题里好像并没有什么用,,,?因为
inline int nw(){if(tot)return rab[tot--];return ++cnt;} inline void throw(int x){rab[++top]=x,ls[x]=rs[x]=Max[x]=id[x]=0;}
2)然后还有一个技巧,是只针对这题的,其他题目不一定能用
就是考虑到这题里面合并之后就没有再修改之类的操作了
所以可以直接合并到其中一棵树上
但是如果,在合并操作之后还要支持修改,就要新开点了QAQ
3)还有一个是我自己的小习惯
这个应该一般人不会有这个问题,,,就是我喜欢在结构体里存储l和r
这样确实比较方便
但是!
耗空间阿!
这题我开始MLE了就是这个问题QAQ
没了,我目前get了的就这几个QwQ!
#include<bits/stdc++.h> using namespace std; #define il inline #define fr first #define sc second #define rg register #define gc getchar() #define mp make_pair #define t(i) edge[i].to #define rp(i,x,y) for(rg int i=x;i<=y;++i) #define my(i,x,y) for(rg int i=x;i>=y;--i) #define e(i,x) for(rg int i=head[x];i;i=edge[i].nxt) const int N=100000+100; int n,m,rt[N],nod_cnt,head[N],ed_cnt,fa[N][20],dep[N],as[N],x[N],y[N],z[N],mx; struct node{int ls,rs,val,mx;}tr[N*50]; struct ed{int to,nxt;}edge[N<<1]; il int read() { rg char ch=gc;rg int x=0;rg bool y=1; while(ch!='-' && (ch>'9' || ch<'0'))ch=gc; if(ch=='-')ch=gc,y=0; while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc; return y?x:-x; } il void ad(int x,int y){edge[++ed_cnt]=(ed){x,head[y]};head[y]=ed_cnt;} il void dfs(int x,int fat){fa[x][0]=fat;dep[x]=dep[fat]+1;rp(i,1,18)fa[x][i]=fa[fa[x][i-1]][i-1];e(i,x)if(t(i)^fat)dfs(t(i),x);} il int lca(int x,int y) { if(dep[x]<dep[y])swap(x,y); my(i,18,0)if(dep[fa[x][i]]>=dep[y])x=fa[x][i];if(x==y)return x; my(i,18,0)if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i]; return fa[x][0]; } il void pushup(int x) {if(tr[tr[x].ls].val>=tr[tr[x].rs].val)tr[x].mx=tr[tr[x].ls].mx,tr[x].val=tr[tr[x].ls].val;else tr[x].mx=tr[tr[x].rs].mx,tr[x].val=tr[tr[x].rs].val;} il void modify(int l,int r,int x,int to,int dat) { if(l==r){tr[x].val+=dat,tr[x].mx=(tr[x].val>0?l:0);return;} int mid=(l+r)>>1; if(to<=mid){if(!tr[x].ls)tr[x].ls=++nod_cnt;modify(l,mid,tr[x].ls,to,dat);} else{if(!tr[x].rs)tr[x].rs=++nod_cnt;modify(mid+1,r,tr[x].rs,to,dat);} pushup(x); } il int merge(int l,int r,int nw1,int nw2) { if(!nw1 || !nw2)return tr[nw1+nw2].val=tr[nw1].val+tr[nw2].val,tr[nw1+nw2].mx=tr[nw1].mx+tr[nw2].mx,nw1+nw2; if(l==r)return tr[nw1].val+=tr[nw2].val,tr[nw1].mx=(tr[nw1].val>0?l:0),nw1; int mid=(l+r)>>1;tr[nw1].ls=merge(l,mid,tr[nw1].ls,tr[nw2].ls);tr[nw1].rs=merge(mid+1,r,tr[nw1].rs,tr[nw2].rs); pushup(nw1);return nw1; } il void dfsdfs(int x,int fat){e(i,x)if(t(i)^fat)dfsdfs(t(i),x),rt[x]=merge(1,mx,rt[x],rt[t(i)]);as[x]=tr[rt[x]].mx;} int main() { n=read();m=read();rp(i,1,n)rt[i]=++nod_cnt; rp(i,1,n-1){int x=read(),y=read();ad(x,y);ad(y,x);}dfs(1,0); rp(i,1,m)x[i]=read(),y[i]=read(),z[i]=read(),mx=max(mx,z[i]); rp(i,1,m){int lcaa=lca(x[i],y[i]);modify(1,mx,rt[x[i]],z[i],1);modify(1,mx,rt[y[i]],z[i],1);modify(1,mx,rt[lcaa],z[i],-1);if(fa[lcaa][0])modify(1,mx,rt[fa[lcaa][0]],z[i],-1);} dfsdfs(1,0);rp(i,1,n)printf("%d\n",as[i]); return 0; }