Java基础知识02

1.描述类加载器的种类

启动类加载器 Bootstrap ClassLoader 

	是Java类加载层次中最顶层的类加载器,负责加载JDK中的核心类库,此类加载器并不继承于 java.lang.ClassLoader,不能被java程序直接调⽤;这个类加载器负责放在<JAVA_HOME>\lib目录中的,或者被-Xbootclasspath参数所指定的路径中的。 


扩展类加载器 Extensions ClassLoader 
	这个类加载器由sun.misc.Launcher$AppClassLoader实现。它负责<JAVA_HOME>\lib\ext⽬录中的,或者被java.ext.dirs系统变量所指定的路径中的所有类库。⽤户可以直接使⽤

应⽤程序类加载器 Application ClassLoader 
	这个类由sun.misc.Launcher$AppClassLoader实现。是ClassLoader中getSystemClassLoader()⽅法的返回值。它负责⽤户路径(CLASSPATH)所指定的类库。⽤户可以直接使⽤。如果⽤户没有⾃⼰定义类加载器,默认使⽤这个。 

⾃定义类加载器 Customer ClassLoader 
	⽤户⾃⼰定义的类加载器。也就是⾃⼰去写⼀个继承java.lang.ClassLoader这个类

2.简述双亲委任机制

	双亲委派机制是指当⼀个类加载器收到⼀个类加载请求时,该类加载器⾸先会把请求委派给⽗类加载器。每个类加载器都是如此,只有在父类加载器在自己的搜索范围内找不到指定类时,子类加载器才会尝试自己去加载。 

双亲委派模型⼯作流程: 

  1.当Application ClassLoader 收到⼀个类加载请求时,他⾸先不会自己去尝试加载这个类,⽽是将这个请求委派给⽗类加载器Extension ClassLoader去完成。 

  2.当Extension ClassLoader收到⼀个类加载请求时,他⾸先也不会⾃⼰去尝试加载这个类,⽽是将请求委派给⽗类加载器Bootstrap ClassLoader去完成。  

  3.如果Bootstrap ClassLoader加载失败(在<JAVA_HOME>\lib中未找到所需类),就会让Extension ClassLoader尝试加载。 

  4.如果Extension ClassLoader也加载失败,就会使⽤Application ClassLoader加载。 

  5.如果Application ClassLoader也加载失败,就会使⽤⾃定义加载器去尝试加载。 

  6.如果均加载失败,就会抛出ClassNotFoundException异常

3.将之前编写的HelloWrold.java打成jar包并运⾏。

1.将java⽂件编译成class⽂件 

	javac HelloWorld.java 

2.将class⽂件打成jar包 并指定jar的程序⼊⼝ 

	jar -cvfe Hello.jar Hello Hello.class 

3.运⾏⽣成的jar包 

	java -jar Hello.jar 

4.字节码验证的时候验证了什么? 

	变量要在使⽤之前进⾏初始化 

	程序不能破坏计算机硬件 

	⽅法调⽤与对象引⽤类型之前要匹配 

	访问私有数据和⽅法的规则没有被违背 

	对本地变量的访问落在运⾏时堆栈内 

	运⾏时堆栈没有溢出
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值