乘法逆元
就是
此时b就是a模p意义下的逆元,即
下面我们用inv[a]表示a模p意义下的逆元。
逆元是好东西啊
有时候我们需要算出 a/b mod p 的值,用朴素的方法,我们只能在 a 上不断加 p ,直到它能被 b 整除为止。
当 a,b,p 都很大的时候,这种方法就只能凉凉了,但如果有了逆元,我们就可以非常方便,快捷地求解。
——————某位大佬的话
所以我先讲讲逆元性质:
唯一性就不用讲了
1.积性
假如a与b互质,
2.乘变除
证明如下:
两边都乘一个
,就得到了上面的式子
至于逆元的求法,有很多,我只讲四种。
首先,是求单个逆元
1.费马小定理
当 p 为素数时:
所以
所以 就是a在模p意义下的逆