乘法逆元及两道模板题详解

本文详细介绍了乘法逆元的概念,包括积性和乘变除性质,并讲解了如何使用费马小定理和扩展欧几里得算法求单个逆元。接着探讨了欧拉函数筛法和线性递推在求多个逆元中的应用。同时,文章通过两道洛谷题目实例展示了逆元在解决实际问题中的应用,并提醒读者在递归函数中慎用内联函数以优化性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

乘法逆元

就是a\times b\equiv 1(\mod p\left\left\left)

此时b就是a模p意义下的逆元,即inv[a]=b;

下面我们用inv[a]表示a模p意义下的逆元。

逆元是好东西啊

有时候我们需要算出 a/b mod p 的值,用朴素的方法,我们只能在 a 上不断加 p ,直到它能被 b 整除为止。
当 a,b,p 都很大的时候,这种方法就只能凉凉了,但如果有了逆元,我们就可以非常方便,快捷地求解。                    

                                                                      ——————某位大佬的话

所以我先讲讲逆元性质:

唯一性就不用讲了

1.积性

假如a与b互质,inv[a]\times inv[b]\equiv inv[a*b]

2.乘变除

a\times inv[b]\equiv a\div b (\mod p\left\left) 

证明如下:

b\times inv[b]\equiv 1\left ( \mod p \left\left)          

两边都乘一个 \frac{a}{b} ,就得到了上面的式子


至于逆元的求法,有很多,我只讲四种。

首先,是求单个逆元

1.费马小定理

当 p 为素数时:

a^{p-1}\equiv 1(\mod p\left\left\left)

a^{p-1}= a\times a^{p-2}

所以

a\times a^{p-2}\equiv 1(\mod p\left\left\left)

所以 a^{p-2}就是a在模p意义下的逆

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值