python版图

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

学习通过python绘制klayout


本文仅做摘抄,具体参考Nazca官网

一、基本语句

1.创建层

with nd.Cell(name='Cell_A') as cella:# 创建一个版图 放置一个版图
    cellb.put()           #可以将创建好的层放置新的层 但原来的cell不会改变
    

2.put 语句

调用 **put**
def put(self, *args, flip=False, flop=False, array=None, scale=1.0,
        drc=None, **kwargs):
        args:引脚名称 最多为5个
        x,y,a:放置位置和旋转角度
        flip:垂直翻转
        float:水平翻转
        scale:缩放

put():
    put(0):放置在层的默认位置,一般为(0,0)
    put():放置在上一个结构后面
    put(x,y):放置在(x,y)位置

3. 引脚

 C.default_pins('bert', 'ernie'):每个结构都有起始引脚和终止引脚,
 								 使用put()就是在终止引脚的后面接上初始引脚,改变初始引脚和终止引脚的默认名
                                 默认为 :a0,b0
    #C.autobbox = True             :使每个引脚可视化
    e1 = nd.strt(length=5).put()
    e2 = nd.bend(angle=45).put()
    nd.Pin(name='bert', pin=e1.pin['a0']).put()  :定义初始引脚为结构一的初始引脚
    nd.Pin(name='ernie', pin=e2.pin['b0']).put() :定义终止引脚为结构二的终止引脚,这样方便put()添加结构在结构二的后面而不是结构一的后面
                                                    不更改引脚位置,put()的默认位置不会改变
    nd.put_stub()  :使初始引脚可视化

4.截面

 nd.add_xsection(name='XS1'):创建一个名为 XS1 的截面:在绘制结构的时候会采用这个XS1的界面绘制
    xs1.width = 3.0         设置XS1的基础宽度
    xs1.radius= 50.0        设置XS1的基础半径
    如果这个界面中有三个层,则会在这个三个层中均绘制改结构
    例子:
    nd.add_layer(name='L1', layer=1)
    nd.add_layer(name='L2', layer=(2, 0))
    nd.add_layer(name='L3', layer=(3, 10))
    创建层
    nd.add_layer2xsection(xsection='XS1', layer='L1')
    nd.add_layer2xsection(xsection='XS1', layer='L1', leftedge=(3.0, 1.0), rightedge=(1.0, 1.0))
    nd.add_layer2xsection(xsection='XS1', layer='L1', leftedge=(-1.0, -1.0), rightedge=(-3.0, -1.0))
    在一个层上添加截面
    nd.add_layer2xsection(xsection='XS1', layer='L1')
    nd.add_layer2xsection(xsection='XS1', layer='L3', growx=5.0)
    将三个层接入截面XS1:growx为在 x 方向上对称增长 5.0 单位
    nd.add_layer2xsection(xsection='XS1', layer='L2', leftedge=(0.5, 2), rightedge=(-0.5, -2))
    leftedge 边界延长值0.5*width+2 um   right同理  所有的距离计算都是从0开始的向左右两边而不是从边界

5. Interconnects.Interconnect

interconnects.Interconnect 是一个强大的工具,允许设计者通过定义截面、设置互连属性和创建各种布局元素(如直线、弯曲和渐变)来实现复杂的光学设计。

 def __init__(
        self,     
        radius=None, 默认半径,单位为微米
        width=None,  默认波导宽度,单位为微米
        angle=90,	 弯曲的默认角度(默认=90度)
        xs=None,	 波导截面(默认='nazca')
        layer=None,	 在其中绘制互连的图层。优先使用 xs 而不是图层来存储额外的信息,如偏移、折射率等。(默认=None)
        adapt_width=False, 	将互连宽度适应连接的引脚(默认=False)
        adapt_xs=False,		将互连宽度适应连接的引脚(默认=False)
        instantiate=False,	 实例化互连单元(默认=False)
        pinstyle=None,		互连引脚的可视化样式。默认=None,使用 cfg 中的默认 pinstyle
        offset=None,		如果不为 None,则用提供的偏移值或函数覆盖 xsection 的直线-弯曲偏移(默认=None)。
        varname=None,		
        doc='',
        PCB=False,			则将弯曲的最大角度设置为 45 度(默认=False)。
        modes=None,
    ):

连接到其他互连

ic.connect(width1=3.0, length=30, ic=other_ic).put()

示例

import nazca as nd

# 创建截面
nd.add_xsection(name='XS1', width=3.0, radius=50.0)

# 创建互连对象
ic = nd.interconnects.Interconnect(xs='XS1')

# 创建布局
ic.strt(length=10).put(0)      # 添加直线
ic.bend(angle=45).put()        # 添加弯曲
ic.taper(length=15, width2=2.0).put()  # 添加渐变

# 导出 GDS
nd.export_gds()

6.Free form parametric curves 平滑曲线连接

import numpy as np
import nazca as nd
# create functions x, y, w for the viper-based mask_element:定义x,y,w
def x(t, radius, angle, **kwargs):
    """X as function of t and free parameters."""
    return radius * np.cos(t * angle * np.pi / 180)				返回函数可自定义 通过自定义函数去设计两段波导的平滑链接
def y(t, radius, angle, **kwargs):
    """Y as function of t and free parameters."""
    return radius * np.sin(t * angle * np.pi / 180)
def w(t, width1=None, width2=None, **kwargs):
    """Width as function of t, width1 and width2 and free parameters."""
    return width1 + (width2 - width1) * t
# create the new parametric function using the template Tp_viper():定义bend初始参数半径和角度
params = {'radius': 100, 'angle':90} # include defaults for *all* free parameters used in the functions x, y and w.
tapered_bend = nd.Tp_viper(x, y, w, xs='Deep', **params):定义弯曲函数名
tapered_bend(angle=-300, radius=60, width1=20, width2=0.5, N=2000).put():绘制从当前角度转300度,宽度从20 um到0.5 um
																		点数为2000的平滑曲线连接

7.绘制text

# example created by Bright Photonics

import nazca as nd

message = 'Nazca-Design'
nd.text(text=message, height=30, layer=1, align='cc').put(0, 0)

f = nd.Font('cousine')
f.text(text=message, height=20, layer=2, align='cc').put(0, 40)

nd.export_gds()

二、基本结构

1. taper

nd.taper(length=10, width1=1, width2=5).put(0)
    #放置一个taper:它的长度为 10 单位,起始宽度为 1 单位,终止宽度为 5 单位。
    def Tp_taper(
            length=100,     #长度
            width1=2,       #起始宽度
            width2=3,       #终止宽度
            shift=0,        #旋转
            xs=None,        #放置的x的位置
            layer=None,     #层
            name=None,      #名字
            modes=None,     #包含网表模式标签的整数列表
    )

2.bend

nd.bend(angle=90).put(0)
    #放置一个90°的弯曲
    def Tp_arc(
            radius=10,  半径
            width=1.0,  波导宽度
            angle=90,   弧的角度
            xs=None,    放置的X的位置
            layer=None, 层
            offset=None,偏移量
            name=None,  名字
            modes=None,
    )

3.strt

nd.strt(10).put(0)
    #放置一个长度为10的直线结构
    def Tp_straight(
            length=10,  长度
            width=1.0,  宽度
            xs=None,    X位置
            layer=None, 层
            edge1=None, 边缘1的形状函数,NONE为直线
            edge2=None, 边缘2的形状函数
            edgepoints=50,边缘的点数
            name=None,  名字
            modes=None,
    )

4.ptaper

ptaper: 放置一个边界为曲线的taper
    def Tp_ptaper(
    length=100, 长度
    width1=1.0, 初始宽度
    width2=3.0, 终止宽度
    xs=None,
    layer=None,
    name=None,
    modes=None,
)

5.Sbend

sinebend: S_bend
    def Tp_sinecurve(
    width=1.0,     波导宽度
    distance=200,   整体长度
    offset=20,      y_span=20 um
    xs=None,
    layer=None,
    name=None,
 )

6.euler:欧拉弯曲

def Tp_euler(
    width1=1.0,     起始宽度
    width2=1.0,     终止宽度
    radius=50,      半径
    angle=90,       角度
    xs=None,
    layer=None,
    name='euler',
    modes=None,
)

7.创建多边形

bb_body = [(5.0, -5.0), (5.0, -1.0), (0.0, -1.0), (0.0, 1.0),
           (5.0, 1.0), (5.0, 5.0), (35.0, 5.0), (35.0, 3.5),
           (40.0, 3.5), (40.0, 1.5), (35.0, 1.5), (35.0, -1.5),
           (40.0, -1.5), (40.0, -3.5), (35.0, -3.5), (35.0, -5.0)] 设置点
nd.Polygon(points=bb_body, layer='layer3').put(0)
nd.Pin('a0').put(0, 0, 180)  设置引脚
nd.Pin('b0').put(40, 2.5, 0)
nd.Pin('b1').put(40, -2.5, 0)
nd.put_stub()

基本设置

矩形: 使用四个点定义矩形的顶点。
rectangle = nd.Polygon(layer=1, points=[(x1, y1), (x2, y1), (x2, y2), (x1, y2)])

三角形: 通过三个点定义三角形。
triangle = nd.Polygon(layer=1, points=[(x1, y1), (x2, y2), (x3, y3)])

圆形: 使用geom.circle函数创建圆形。
circle = nd.Polygon(layer=1, points=geom.circle(radius=radius))

多边形: 可以定义任意形状的多边形,通过指定多个点。
polygon = nd.Polygon(layer=1, points=[(x1, y1), (x2, y2), (x3, y3), ...])

环形: 使用geom.ring函数创建环形,指定内外半径。
ring = nd.Polygon(layer=1, points=geom.ring(radius=outer_radius, inner_radius=inner_radius))

建立基础结构 np.geometries

import nazca as nd

with nd.Cell('hole') as hole:
    hole_shape = nd.geometries.circle(radius=0.05, N=8)
    nd.Polygon(points=hole_shape).put(0)

hole.put(array=[20, [0.25, 0], 30, [0, 0.30]])
hole.put(5, -5, array=[40, [0.20, 0.10], 50, [0.10, 0.30]])

nd.export_gds()

三.常用函数或结构

1.合并和删除多边形

def merge_polygons(cell, layers):

 """Merge all polygons per layer after flattening <cell>.

    Cell <cell> itself will not be affected. Note that a merged polygons may
    still consist of multiple polygons (islands).

    Args:
        cell (Cell): cell to process
        layers (list of str): names of layers to merge polygons in

    Returns:
        dict: {layer_name: merged_polygon}
    """
    pgons = defaultdict(list)
    for params in nd.cell_iter(cell, flat=True):
        for pgon, xy, bbox in params.iters['polygon']:
            for lay in layers:
                if pgon.layer == lay:
                    pgons[lay].append(xy)
    for lay in layers:
        pgons[lay] = nd.clipper.merge_polygons(pgons[lay])
    return pgons
def remove_polygons(cell, layers):
    """Remove all polygons in <layers> from <cell>.

    Args:
        cell (Cell): cell to process
        layers (list of str): names of layers to delete polygons from

    Returns:
        None
    """
    for params in nd.cell_iter(cell):
        if params.cell_start:
            pgons = []
            for pgon in params.cell.polygons:
                if pgon[1].layer not in layers:
                    pgons.append(pgon)
            params.cell.polygons = pgons
    return None
<think>嗯,用户之前已经问过KLayout的介绍,现在又重复了同样的问题。这可能意味着用户对之前的回答还不够满意,或者想确认更多细节。我需要检查之前的回答是否全面,是否有遗漏的关键点。 首先,回顾之前的回答,已经涵盖了核心功能、应用场景、优势、安装使用和学习资源。可能用户希望更深入的技术细节,比如支持的版本、最新功能更新,或者与其他工具的比较。 另外,用户可能在使用KLayout时遇到了问题,需要更具体的操作指导,比如如何执行DRC检查,或者如何编写脚本。但用户并没有明确说明,所以需要进一步询问是否需要这些细节。 也有可能用户误操作重复提问,这时候应该确认是否之前的回答已经满足需求,或者是否有其他问题需要解决。但根据指示,应继续提供帮助,所以需要补充更多信息,比如社区支持、插件生态、常见问题等。 还要注意用户身份,可能是学生、工程师或研究人员。如果是学生,可能需要更基础的操作指南;工程师可能关注实际应用和效率;研究人员可能对扩展功能和定制化更感兴趣。之前的回答已经覆盖了这些方面,但可以更详细。 最后,确保回答结构清晰,分点明确,语言简洁,符合用户的需求。可能可以加入一些使用案例或典型问题解决方案,帮助用户更好地理解如何应用KLayout解决实际问题。</think>以下是关于 **KLayout** 的详细介绍,分模块说明其功能、特点及适用场景: --- ### 一、基础介绍 **KLayout** 是一款开源、跨平台的集成电路(IC)版图设计与验证工具,专注于处理 **GDSII**、**OASIS** 等芯片版图文件格式。其核心目标是提供轻量级、高效的版图查看、编辑和分析功能,尤其适合中小型设计团队或学术研究。 --- ### 二、核心功能详解 #### 1. **版图查看与编辑** - **多格式支持** 支持主流版图格式:GDSII、OASIS、DXF、CIF,甚至可导入图像(如PNG)作为参考层。 - **图层管理** 可自定义图层颜色、透明度、填充模式,支持图层分组和逻辑运算(如布尔操作)。 - **交互操作** 提供标尺测量(快捷键 `M`)、标记注释、版图对比(差异高亮)等功能。 #### 2. **设计规则检查(DRC)** - **自定义规则** 通过脚本或图形化界面定义规则,例如最小线宽、间距、覆盖层对齐等。 - **批量验证** 可对全芯片版图执行DRC,生成错误报告并定位具体坐标(支持导出为文本或标记图层)。 #### 3. **脚本自动化** - **支持语言** 内置 **Ruby** 和 **Python** 接口,可编写脚本实现复杂操作(如批量修改版图、提取关键参数)。 - **示例应用** - 自动提取版图中所有接触孔(Contact)的坐标和尺寸。 - 根据工艺文件动态调整金属层密度。 #### 4. **高级功能** - **版图比对(LVS验证辅助)** 快速对比两个版图文件的结构差异,辅助电路与版图一致性检查(LVS)。 - **3D预览** 基于版图层叠信息生成粗略的3D结构模型(需手动定义层厚和材料顺序)。 --- ### 三、典型应用场景 1. **IC设计验证** - 检查版图是否符合代工厂的设计规则(如TSMC、SMIC工艺要求)。 - 分析寄生参数前的几何结构预处理。 2. **学术研究** - 微纳器件(如FinFET、MEMS)的版图设计与仿真前处理。 - 光刻掩模版(Mask)的快速原型制作。 3. **小规模项目开发** - 开源芯片项目(如RISC-V)的版图协作与版本管理。 --- ### 四、优势与局限性 | **优势** | **局限性** | |-------------------------|-------------------------| | 完全免费开源,无版权限制 | 复杂版图编辑功能弱于商业工具(如Cadence Virtuoso) | | 启动速度快,资源占用低 | 缺乏高级仿真集成(需配合其他工具) | | 脚本扩展性强,社区活跃 | 原生界面操作对新手不够友好 | --- ### 五、快速入门指南 1. **安装** - 官网下载地址:https://www.klayout.de - Linux终端安装:`sudo apt-get install klayout` 2. **基础操作流程** ```plaintext 1. 打开文件:File → Open → 选择GDSII/OASIS文件 2. 调整图层:右侧"Layer"面板设置颜色/可见性 3. 执行DRC:Tools → DRC → 加载规则文件 → Run 4. 导出结果:File → Export → 选择格式(如PNG/PDF) ``` 3. **脚本示例(Python)** ```python # 提取版图中所有矩形的坐标 import pya layout = pya.Layout() layout.read("input.gds") layer = layout.layer(1, 0) # 指定图层 for shape in layout.top_cell().shapes(layer): if shape.is_box(): print("矩形坐标:", shape.box) ``` --- ### 六、学习资源推荐 1. **官方文档**:[KLayout User Manual](https://www.klayout.de/doc-qt5/about/introduction.html) 2. **社区论坛**:GitHub Issues 和 [KLayout Forum](https://www.klayout.de/forum/) 3. **实战案例**:参考开源项目 [OpenLane](https://github.com/efabless/openlane) 中的KLayout集成用法。 如果需要具体功能(如DRC规则编写、版图参数提取)的操作演示,可进一步说明需求! 🚀
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值