209. 长度最小的子数组
1.题目描述
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
进阶:
如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。
2.解题思路
首先看到这个题目,第一感觉就是双重循环直接暴力求解。
但是仔细一想就会发现,暴力求解的过程中进行很多不必要的操作。
假如数组的内容是[1, 2 ,3 , 4, 5]
,target
的值是4。
显然第一个满足条件的连续子数组是[1, 2 ,3]
,那么这时候,以[1]
开头的连续子数组就可以不用再继续往下找了,因为再往后的长度一定大于当前子数组的长度。
这时候,我们需要做的是检查,这个子数组里面,有没有哪一部分的和是满足>= target
这个条件的,显然,我们需要将当前子数组的起始位置后移,也就是去检查[2, 3]
这个数组是否满足条件。如果[2, 3]
是满足条件的,那么我们就需要继续检查[3]
是不是依旧满足条件.[3]
是不满足条件的,接下来继续往后继续以上述思路检查[3 , 4]
…
以上操作,实质上就是滑动窗口,本质上属于双指针操作数组的一种。
代码:
int minSubArrayLen(int target, vector<int>& nums) {
int arrlen = 1000000;
int numsize = nums.size();
int flag = 0;
int sum = 0;
int j = 0;
for(int i = 0; i < numsize; i++){ //i的变化是调整窗口的结束位置
sum += nums[i];
while(sum >= target){
flag = i - j + 1;
arrlen = arrlen > flag ? flag : arrlen;
sum -= nums[j];
j++; //j的变化就是调整窗口的初始位置
}
}
return arrlen == 1000000 ? 0 : arrlen;
}
ps:刷题的顺序是看了大佬的书(代码随想录),写博客只是为了自己检查是是否真的掌握知识点和记录。